1 /*
2  * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */

25
26 package java.lang;
27
28 import java.io.ObjectStreamField;
29 import java.io.UnsupportedEncodingException;
30 import java.lang.annotation.Native;
31 import java.nio.charset.Charset;
32 import java.util.ArrayList;
33 import java.util.Arrays;
34 import java.util.Comparator;
35 import java.util.Formatter;
36 import java.util.Locale;
37 import java.util.Objects;
38 import java.util.Spliterator;
39 import java.util.StringJoiner;
40 import java.util.regex.Matcher;
41 import java.util.regex.Pattern;
42 import java.util.regex.PatternSyntaxException;
43 import java.util.stream.IntStream;
44 import java.util.stream.Stream;
45 import java.util.stream.StreamSupport;
46 import jdk.internal.HotSpotIntrinsicCandidate;
47 import jdk.internal.vm.annotation.Stable;
48
49 /**
50  * The {@code String} class represents character strings. All
51  * string literals in Java programs, such as {@code "abc"}, are
52  * implemented as instances of this class.
53  * <p>
54  * Strings are constant; their values cannot be changed after they
55  * are created. String buffers support mutable strings.
56  * Because String objects are immutable they can be shared. For example:
57  * <blockquote><pre>
58  *     String str = "abc";
59  * </pre></blockquote><p>
60  * is equivalent to:
61  * <blockquote><pre>
62  *     char data[] = {'a', 'b', 'c'};
63  *     String str = new String(data);
64  * </pre></blockquote><p>
65  * Here are some more examples of how strings can be used:
66  * <blockquote><pre>
67  *     System.out.println("abc");
68  *     String cde = "cde";
69  *     System.out.println("abc" + cde);
70  *     String c = "abc".substring(2,3);
71  *     String d = cde.substring(1, 2);
72  * </pre></blockquote>
73  * <p>
74  * The class {@code String} includes methods for examining
75  * individual characters of the sequence, for comparing strings, for
76  * searching strings, for extracting substrings, and for creating a
77  * copy of a string with all characters translated to uppercase or to
78  * lowercase. Case mapping is based on the Unicode Standard version
79  * specified by the {@link java.lang.Character Character} class.
80  * <p>
81  * The Java language provides special support for the string
82  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
83  * other objects to strings. For additional information on string
84  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
85  *
86  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
87  * or method in this class will cause a {@link NullPointerException} to be
88  * thrown.
89  *
90  * <p>A {@code String} represents a string in the UTF-16 format
91  * in which <em>supplementary characters</em> are represented by <em>surrogate
92  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
93  * Character Representations</a> in the {@code Character} class for
94  * more information).
95  * Index values refer to {@code char} code units, so a supplementary
96  * character uses two positions in a {@code String}.
97  * <p>The {@code String} class provides methods for dealing with
98  * Unicode code points (i.e., characters), in addition to those for
99  * dealing with Unicode code units (i.e., {@code char} values).
100  *
101  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
102  * into account.  The {@link java.text.Collator} class provides methods for
103  * finer-grain, locale-sensitive String comparison.
104  *
105  * @implNote The implementation of the string concatenation operator is left to
106  * the discretion of a Java compiler, as long as the compiler ultimately conforms
107  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
108  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
109  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
110  * implementation of string conversion is typically through the method {@code toString},
111  * defined by {@code Object} and inherited by all classes in Java.
112  *
113  * @author  Lee Boynton
114  * @author  Arthur van Hoff
115  * @author  Martin Buchholz
116  * @author  Ulf Zibis
117  * @see     java.lang.Object#toString()
118  * @see     java.lang.StringBuffer
119  * @see     java.lang.StringBuilder
120  * @see     java.nio.charset.Charset
121  * @since   1.0
122  * @jls     15.18.1 String Concatenation Operator +
123  */

124
125 public final class String
126     implements java.io.Serializable, Comparable<String>, CharSequence {
127
128     /**
129      * The value is used for character storage.
130      *
131      * @implNote This field is trusted by the VM, and is a subject to
132      * constant folding if String instance is constant. Overwriting this
133      * field after construction will cause problems.
134      *
135      * Additionally, it is marked with {@link Stable} to trust the contents
136      * of the array. No other facility in JDK provides this functionality (yet).
137      * {@link Stable} is safe here, because value is never null.
138      */

139     @Stable
140     private final byte[] value;
141
142     /**
143      * The identifier of the encoding used to encode the bytes in
144      * {@code value}. The supported values in this implementation are
145      *
146      * LATIN1
147      * UTF16
148      *
149      * @implNote This field is trusted by the VM, and is a subject to
150      * constant folding if String instance is constant. Overwriting this
151      * field after construction will cause problems.
152      */

153     private final byte coder;
154
155     /** Cache the hash code for the string */
156     private int hash; // Default to 0
157
158     /** use serialVersionUID from JDK 1.0.2 for interoperability */
159     private static final long serialVersionUID = -6849794470754667710L;
160
161     /**
162      * If String compaction is disabled, the bytes in {@code value} are
163      * always encoded in UTF16.
164      *
165      * For methods with several possible implementation paths, when String
166      * compaction is disabled, only one code path is taken.
167      *
168      * The instance field value is generally opaque to optimizing JIT
169      * compilers. Therefore, in performance-sensitive place, an explicit
170      * check of the static boolean {@code COMPACT_STRINGS} is done first
171      * before checking the {@code coder} field since the static boolean
172      * {@code COMPACT_STRINGS} would be constant folded away by an
173      * optimizing JIT compiler. The idioms for these cases are as follows.
174      *
175      * For code such as:
176      *
177      *    if (coder == LATIN1) { ... }
178      *
179      * can be written more optimally as
180      *
181      *    if (coder() == LATIN1) { ... }
182      *
183      * or:
184      *
185      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
186      *
187      * An optimizing JIT compiler can fold the above conditional as:
188      *
189      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
190      *    COMPACT_STRINGS == false => if (false)           { ... }
191      *
192      * @implNote
193      * The actual value for this field is injected by JVM. The static
194      * initialization block is used to set the value here to communicate
195      * that this static final field is not statically foldable, and to
196      * avoid any possible circular dependency during vm initialization.
197      */

198     static final boolean COMPACT_STRINGS;
199
200     static {
201         COMPACT_STRINGS = true;
202     }
203
204     /**
205      * Class String is special cased within the Serialization Stream Protocol.
206      *
207      * A String instance is written into an ObjectOutputStream according to
208      * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
209      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
210      */

211     private static final ObjectStreamField[] serialPersistentFields =
212         new ObjectStreamField[0];
213
214     /**
215      * Initializes a newly created {@code String} object so that it represents
216      * an empty character sequence.  Note that use of this constructor is
217      * unnecessary since Strings are immutable.
218      */

219     public String() {
220         this.value = "".value;
221         this.coder = "".coder;
222     }
223
224     /**
225      * Initializes a newly created {@code String} object so that it represents
226      * the same sequence of characters as the argument; in other words, the
227      * newly created string is a copy of the argument string. Unless an
228      * explicit copy of {@code original} is needed, use of this constructor is
229      * unnecessary since Strings are immutable.
230      *
231      * @param  original
232      *         A {@code String}
233      */

234     @HotSpotIntrinsicCandidate
235     public String(String original) {
236         this.value = original.value;
237         this.coder = original.coder;
238         this.hash = original.hash;
239     }
240
241     /**
242      * Allocates a new {@code String} so that it represents the sequence of
243      * characters currently contained in the character array argument. The
244      * contents of the character array are copied; subsequent modification of
245      * the character array does not affect the newly created string.
246      *
247      * @param  value
248      *         The initial value of the string
249      */

250     public String(char value[]) {
251         this(value, 0, value.length, null);
252     }
253
254     /**
255      * Allocates a new {@code String} that contains characters from a subarray
256      * of the character array argument. The {@code offset} argument is the
257      * index of the first character of the subarray and the {@code count}
258      * argument specifies the length of the subarray. The contents of the
259      * subarray are copied; subsequent modification of the character array does
260      * not affect the newly created string.
261      *
262      * @param  value
263      *         Array that is the source of characters
264      *
265      * @param  offset
266      *         The initial offset
267      *
268      * @param  count
269      *         The length
270      *
271      * @throws  IndexOutOfBoundsException
272      *          If {@code offset} is negative, {@code count} is negative, or
273      *          {@code offset} is greater than {@code value.length - count}
274      */

275     public String(char value[], int offset, int count) {
276         this(value, offset, count, rangeCheck(value, offset, count));
277     }
278
279     private static Void rangeCheck(char[] value, int offset, int count) {
280         checkBoundsOffCount(offset, count, value.length);
281         return null;
282     }
283
284     /**
285      * Allocates a new {@code String} that contains characters from a subarray
286      * of the <a href="Character.html#unicode">Unicode code point</a> array
287      * argument.  The {@code offset} argument is the index of the first code
288      * point of the subarray and the {@code count} argument specifies the
289      * length of the subarray.  The contents of the subarray are converted to
290      * {@code char}s; subsequent modification of the {@code int} array does not
291      * affect the newly created string.
292      *
293      * @param  codePoints
294      *         Array that is the source of Unicode code points
295      *
296      * @param  offset
297      *         The initial offset
298      *
299      * @param  count
300      *         The length
301      *
302      * @throws  IllegalArgumentException
303      *          If any invalid Unicode code point is found in {@code
304      *          codePoints}
305      *
306      * @throws  IndexOutOfBoundsException
307      *          If {@code offset} is negative, {@code count} is negative, or
308      *          {@code offset} is greater than {@code codePoints.length - count}
309      *
310      * @since  1.5
311      */

312     public String(int[] codePoints, int offset, int count) {
313         checkBoundsOffCount(offset, count, codePoints.length);
314         if (count == 0) {
315             this.value = "".value;
316             this.coder = "".coder;
317             return;
318         }
319         if (COMPACT_STRINGS) {
320             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
321             if (val != null) {
322                 this.coder = LATIN1;
323                 this.value = val;
324                 return;
325             }
326         }
327         this.coder = UTF16;
328         this.value = StringUTF16.toBytes(codePoints, offset, count);
329     }
330
331     /**
332      * Allocates a new {@code String} constructed from a subarray of an array
333      * of 8-bit integer values.
334      *
335      * <p> The {@code offset} argument is the index of the first byte of the
336      * subarray, and the {@code count} argument specifies the length of the
337      * subarray.
338      *
339      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
340      * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
341      *
342      * @deprecated This method does not properly convert bytes into characters.
343      * As of JDK&nbsp;1.1, the preferred way to do this is via the
344      * {@code String} constructors that take a {@link
345      * java.nio.charset.Charset}, charset name, or that use the platform's
346      * default charset.
347      *
348      * @param  ascii
349      *         The bytes to be converted to characters
350      *
351      * @param  hibyte
352      *         The top 8 bits of each 16-bit Unicode code unit
353      *
354      * @param  offset
355      *         The initial offset
356      * @param  count
357      *         The length
358      *
359      * @throws  IndexOutOfBoundsException
360      *          If {@code offset} is negative, {@code count} is negative, or
361      *          {@code offset} is greater than {@code ascii.length - count}
362      *
363      * @see  #String(byte[], int)
364      * @see  #String(byte[], intint, java.lang.String)
365      * @see  #String(byte[], intint, java.nio.charset.Charset)
366      * @see  #String(byte[], intint)
367      * @see  #String(byte[], java.lang.String)
368      * @see  #String(byte[], java.nio.charset.Charset)
369      * @see  #String(byte[])
370      */

371     @Deprecated(since="1.1")
372     public String(byte ascii[], int hibyte, int offset, int count) {
373         checkBoundsOffCount(offset, count, ascii.length);
374         if (count == 0) {
375             this.value = "".value;
376             this.coder = "".coder;
377             return;
378         }
379         if (COMPACT_STRINGS && (byte)hibyte == 0) {
380             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
381             this.coder = LATIN1;
382         } else {
383             hibyte <<= 8;
384             byte[] val = StringUTF16.newBytesFor(count);
385             for (int i = 0; i < count; i++) {
386                 StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
387             }
388             this.value = val;
389             this.coder = UTF16;
390         }
391     }
392
393     /**
394      * Allocates a new {@code String} containing characters constructed from
395      * an array of 8-bit integer values. Each character <i>c</i> in the
396      * resulting string is constructed from the corresponding component
397      * <i>b</i> in the byte array such that:
398      *
399      * <blockquote><pre>
400      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
401      *                         | (<b><i>b</i></b> &amp; 0xff))
402      * </pre></blockquote>
403      *
404      * @deprecated  This method does not properly convert bytes into
405      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
406      * {@code String} constructors that take a {@link
407      * java.nio.charset.Charset}, charset name, or that use the platform's
408      * default charset.
409      *
410      * @param  ascii
411      *         The bytes to be converted to characters
412      *
413      * @param  hibyte
414      *         The top 8 bits of each 16-bit Unicode code unit
415      *
416      * @see  #String(byte[], intint, java.lang.String)
417      * @see  #String(byte[], intint, java.nio.charset.Charset)
418      * @see  #String(byte[], intint)
419      * @see  #String(byte[], java.lang.String)
420      * @see  #String(byte[], java.nio.charset.Charset)
421      * @see  #String(byte[])
422      */

423     @Deprecated(since="1.1")
424     public String(byte ascii[], int hibyte) {
425         this(ascii, hibyte, 0, ascii.length);
426     }
427
428     /**
429      * Constructs a new {@code String} by decoding the specified subarray of
430      * bytes using the specified charset.  The length of the new {@code String}
431      * is a function of the charset, and hence may not be equal to the length
432      * of the subarray.
433      *
434      * <p> The behavior of this constructor when the given bytes are not valid
435      * in the given charset is unspecified.  The {@link
436      * java.nio.charset.CharsetDecoder} class should be used when more control
437      * over the decoding process is required.
438      *
439      * @param  bytes
440      *         The bytes to be decoded into characters
441      *
442      * @param  offset
443      *         The index of the first byte to decode
444      *
445      * @param  length
446      *         The number of bytes to decode
447
448      * @param  charsetName
449      *         The name of a supported {@linkplain java.nio.charset.Charset
450      *         charset}
451      *
452      * @throws  UnsupportedEncodingException
453      *          If the named charset is not supported
454      *
455      * @throws  IndexOutOfBoundsException
456      *          If {@code offset} is negative, {@code length} is negative, or
457      *          {@code offset} is greater than {@code bytes.length - length}
458      *
459      * @since  1.1
460      */

461     public String(byte bytes[], int offset, int length, String charsetName)
462             throws UnsupportedEncodingException {
463         if (charsetName == null)
464             throw new NullPointerException("charsetName");
465         checkBoundsOffCount(offset, length, bytes.length);
466         StringCoding.Result ret =
467             StringCoding.decode(charsetName, bytes, offset, length);
468         this.value = ret.value;
469         this.coder = ret.coder;
470     }
471
472     /**
473      * Constructs a new {@code String} by decoding the specified subarray of
474      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
475      * The length of the new {@code String} is a function of the charset, and
476      * hence may not be equal to the length of the subarray.
477      *
478      * <p> This method always replaces malformed-input and unmappable-character
479      * sequences with this charset's default replacement string.  The {@link
480      * java.nio.charset.CharsetDecoder} class should be used when more control
481      * over the decoding process is required.
482      *
483      * @param  bytes
484      *         The bytes to be decoded into characters
485      *
486      * @param  offset
487      *         The index of the first byte to decode
488      *
489      * @param  length
490      *         The number of bytes to decode
491      *
492      * @param  charset
493      *         The {@linkplain java.nio.charset.Charset charset} to be used to
494      *         decode the {@code bytes}
495      *
496      * @throws  IndexOutOfBoundsException
497      *          If {@code offset} is negative, {@code length} is negative, or
498      *          {@code offset} is greater than {@code bytes.length - length}
499      *
500      * @since  1.6
501      */

502     public String(byte bytes[], int offset, int length, Charset charset) {
503         if (charset == null)
504             throw new NullPointerException("charset");
505         checkBoundsOffCount(offset, length, bytes.length);
506         StringCoding.Result ret =
507             StringCoding.decode(charset, bytes, offset, length);
508         this.value = ret.value;
509         this.coder = ret.coder;
510     }
511
512     /**
513      * Constructs a new {@code String} by decoding the specified array of bytes
514      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
515      * length of the new {@code String} is a function of the charset, and hence
516      * may not be equal to the length of the byte array.
517      *
518      * <p> The behavior of this constructor when the given bytes are not valid
519      * in the given charset is unspecified.  The {@link
520      * java.nio.charset.CharsetDecoder} class should be used when more control
521      * over the decoding process is required.
522      *
523      * @param  bytes
524      *         The bytes to be decoded into characters
525      *
526      * @param  charsetName
527      *         The name of a supported {@linkplain java.nio.charset.Charset
528      *         charset}
529      *
530      * @throws  UnsupportedEncodingException
531      *          If the named charset is not supported
532      *
533      * @since  1.1
534      */

535     public String(byte bytes[], String charsetName)
536             throws UnsupportedEncodingException {
537         this(bytes, 0, bytes.length, charsetName);
538     }
539
540     /**
541      * Constructs a new {@code String} by decoding the specified array of
542      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
543      * The length of the new {@code String} is a function of the charset, and
544      * hence may not be equal to the length of the byte array.
545      *
546      * <p> This method always replaces malformed-input and unmappable-character
547      * sequences with this charset's default replacement string.  The {@link
548      * java.nio.charset.CharsetDecoder} class should be used when more control
549      * over the decoding process is required.
550      *
551      * @param  bytes
552      *         The bytes to be decoded into characters
553      *
554      * @param  charset
555      *         The {@linkplain java.nio.charset.Charset charset} to be used to
556      *         decode the {@code bytes}
557      *
558      * @since  1.6
559      */

560     public String(byte bytes[], Charset charset) {
561         this(bytes, 0, bytes.length, charset);
562     }
563
564     /**
565      * Constructs a new {@code String} by decoding the specified subarray of
566      * bytes using the platform's default charset.  The length of the new
567      * {@code String} is a function of the charset, and hence may not be equal
568      * to the length of the subarray.
569      *
570      * <p> The behavior of this constructor when the given bytes are not valid
571      * in the default charset is unspecified.  The {@link
572      * java.nio.charset.CharsetDecoder} class should be used when more control
573      * over the decoding process is required.
574      *
575      * @param  bytes
576      *         The bytes to be decoded into characters
577      *
578      * @param  offset
579      *         The index of the first byte to decode
580      *
581      * @param  length
582      *         The number of bytes to decode
583      *
584      * @throws  IndexOutOfBoundsException
585      *          If {@code offset} is negative, {@code length} is negative, or
586      *          {@code offset} is greater than {@code bytes.length - length}
587      *
588      * @since  1.1
589      */

590     public String(byte bytes[], int offset, int length) {
591         checkBoundsOffCount(offset, length, bytes.length);
592         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
593         this.value = ret.value;
594         this.coder = ret.coder;
595     }
596
597     /**
598      * Constructs a new {@code String} by decoding the specified array of bytes
599      * using the platform's default charset.  The length of the new {@code
600      * String} is a function of the charset, and hence may not be equal to the
601      * length of the byte array.
602      *
603      * <p> The behavior of this constructor when the given bytes are not valid
604      * in the default charset is unspecified.  The {@link
605      * java.nio.charset.CharsetDecoder} class should be used when more control
606      * over the decoding process is required.
607      *
608      * @param  bytes
609      *         The bytes to be decoded into characters
610      *
611      * @since  1.1
612      */

613     public String(byte[] bytes) {
614         this(bytes, 0, bytes.length);
615     }
616
617     /**
618      * Allocates a new string that contains the sequence of characters
619      * currently contained in the string buffer argument. The contents of the
620      * string buffer are copied; subsequent modification of the string buffer
621      * does not affect the newly created string.
622      *
623      * @param  buffer
624      *         A {@code StringBuffer}
625      */

626     public String(StringBuffer buffer) {
627         this(buffer.toString());
628     }
629
630     /**
631      * Allocates a new string that contains the sequence of characters
632      * currently contained in the string builder argument. The contents of the
633      * string builder are copied; subsequent modification of the string builder
634      * does not affect the newly created string.
635      *
636      * <p> This constructor is provided to ease migration to {@code
637      * StringBuilder}. Obtaining a string from a string builder via the {@code
638      * toString} method is likely to run faster and is generally preferred.
639      *
640      * @param   builder
641      *          A {@code StringBuilder}
642      *
643      * @since  1.5
644      */

645     public String(StringBuilder builder) {
646         this(builder, null);
647     }
648
649     /**
650      * Returns the length of this string.
651      * The length is equal to the number of <a href="Character.html#unicode">Unicode
652      * code units</a> in the string.
653      *
654      * @return  the length of the sequence of characters represented by this
655      *          object.
656      */

657     public int length() {
658         return value.length >> coder();
659     }
660
661     /**
662      * Returns {@code trueif, and only if, {@link #length()} is {@code 0}.
663      *
664      * @return {@code trueif {@link #length()} is {@code 0}, otherwise
665      * {@code false}
666      *
667      * @since 1.6
668      */

669     public boolean isEmpty() {
670         return value.length == 0;
671     }
672
673     /**
674      * Returns the {@code char} value at the
675      * specified index. An index ranges from {@code 0} to
676      * {@code length() - 1}. The first {@code char} value of the sequence
677      * is at index {@code 0}, the next at index {@code 1},
678      * and so on, as for array indexing.
679      *
680      * <p>If the {@code char} value specified by the index is a
681      * <a href="Character.html#unicode">surrogate</a>, the surrogate
682      * value is returned.
683      *
684      * @param      index   the index of the {@code char} value.
685      * @return     the {@code char} value at the specified index of this string.
686      *             The first {@code char} value is at index {@code 0}.
687      * @exception  IndexOutOfBoundsException  if the {@code index}
688      *             argument is negative or not less than the length of this
689      *             string.
690      */

691     public char charAt(int index) {
692         if (isLatin1()) {
693             return StringLatin1.charAt(value, index);
694         } else {
695             return StringUTF16.charAt(value, index);
696         }
697     }
698
699     /**
700      * Returns the character (Unicode code point) at the specified
701      * index. The index refers to {@code char} values
702      * (Unicode code units) and ranges from {@code 0} to
703      * {@link #length()}{@code  - 1}.
704      *
705      * <p> If the {@code char} value specified at the given index
706      * is in the high-surrogate range, the following index is less
707      * than the length of this {@code String}, and the
708      * {@code char} value at the following index is in the
709      * low-surrogate range, then the supplementary code point
710      * corresponding to this surrogate pair is returned. Otherwise,
711      * the {@code char} value at the given index is returned.
712      *
713      * @param      index the index to the {@code char} values
714      * @return     the code point value of the character at the
715      *             {@code index}
716      * @exception  IndexOutOfBoundsException  if the {@code index}
717      *             argument is negative or not less than the length of this
718      *             string.
719      * @since      1.5
720      */

721     public int codePointAt(int index) {
722         if (isLatin1()) {
723             checkIndex(index, value.length);
724             return value[index] & 0xff;
725         }
726         int length = value.length >> 1;
727         checkIndex(index, length);
728         return StringUTF16.codePointAt(value, index, length);
729     }
730
731     /**
732      * Returns the character (Unicode code point) before the specified
733      * index. The index refers to {@code char} values
734      * (Unicode code units) and ranges from {@code 1} to {@link
735      * CharSequence#length() length}.
736      *
737      * <p> If the {@code char} value at {@code (index - 1)}
738      * is in the low-surrogate range, {@code (index - 2)} is not
739      * negative, and the {@code char} value at {@code (index -
740      * 2)} is in the high-surrogate range, then the
741      * supplementary code point value of the surrogate pair is
742      * returned. If the {@code char} value at {@code index -
743      * 1} is an unpaired low-surrogate or a high-surrogate, the
744      * surrogate value is returned.
745      *
746      * @param     index the index following the code point that should be returned
747      * @return    the Unicode code point value before the given index.
748      * @exception IndexOutOfBoundsException if the {@code index}
749      *            argument is less than 1 or greater than the length
750      *            of this string.
751      * @since     1.5
752      */

753     public int codePointBefore(int index) {
754         int i = index - 1;
755         if (i < 0 || i >= length()) {
756             throw new StringIndexOutOfBoundsException(index);
757         }
758         if (isLatin1()) {
759             return (value[i] & 0xff);
760         }
761         return StringUTF16.codePointBefore(value, index);
762     }
763
764     /**
765      * Returns the number of Unicode code points in the specified text
766      * range of this {@code String}. The text range begins at the
767      * specified {@code beginIndex} and extends to the
768      * {@code char} at index {@code endIndex - 1}. Thus the
769      * length (in {@code char}s) of the text range is
770      * {@code endIndex-beginIndex}. Unpaired surrogates within
771      * the text range count as one code point each.
772      *
773      * @param beginIndex the index to the first {@code char} of
774      * the text range.
775      * @param endIndex the index after the last {@code char} of
776      * the text range.
777      * @return the number of Unicode code points in the specified text
778      * range
779      * @exception IndexOutOfBoundsException if the
780      * {@code beginIndex} is negative, or {@code endIndex}
781      * is larger than the length of this {@code String}, or
782      * {@code beginIndex} is larger than {@code endIndex}.
783      * @since  1.5
784      */

785     public int codePointCount(int beginIndex, int endIndex) {
786         if (beginIndex < 0 || beginIndex > endIndex ||
787             endIndex > length()) {
788             throw new IndexOutOfBoundsException();
789         }
790         if (isLatin1()) {
791             return endIndex - beginIndex;
792         }
793         return StringUTF16.codePointCount(value, beginIndex, endIndex);
794     }
795
796     /**
797      * Returns the index within this {@code String} that is
798      * offset from the given {@code index} by
799      * {@code codePointOffset} code points. Unpaired surrogates
800      * within the text range given by {@code index} and
801      * {@code codePointOffset} count as one code point each.
802      *
803      * @param index the index to be offset
804      * @param codePointOffset the offset in code points
805      * @return the index within this {@code String}
806      * @exception IndexOutOfBoundsException if {@code index}
807      *   is negative or larger then the length of this
808      *   {@code String}, or if {@code codePointOffset} is positive
809      *   and the substring starting with {@code index} has fewer
810      *   than {@code codePointOffset} code points,
811      *   or if {@code codePointOffset} is negative and the substring
812      *   before {@code index} has fewer than the absolute value
813      *   of {@code codePointOffset} code points.
814      * @since 1.5
815      */

816     public int offsetByCodePoints(int index, int codePointOffset) {
817         if (index < 0 || index > length()) {
818             throw new IndexOutOfBoundsException();
819         }
820         return Character.offsetByCodePoints(this, index, codePointOffset);
821     }
822
823     /**
824      * Copies characters from this string into the destination character
825      * array.
826      * <p>
827      * The first character to be copied is at index {@code srcBegin};
828      * the last character to be copied is at index {@code srcEnd-1}
829      * (thus the total number of characters to be copied is
830      * {@code srcEnd-srcBegin}). The characters are copied into the
831      * subarray of {@code dst} starting at index {@code dstBegin}
832      * and ending at index:
833      * <blockquote><pre>
834      *     dstBegin + (srcEnd-srcBegin) - 1
835      * </pre></blockquote>
836      *
837      * @param      srcBegin   index of the first character in the string
838      *                        to copy.
839      * @param      srcEnd     index after the last character in the string
840      *                        to copy.
841      * @param      dst        the destination array.
842      * @param      dstBegin   the start offset in the destination array.
843      * @exception IndexOutOfBoundsException If any of the following
844      *            is true:
845      *            <ul><li>{@code srcBegin} is negative.
846      *            <li>{@code srcBegin} is greater than {@code srcEnd}
847      *            <li>{@code srcEnd} is greater than the length of this
848      *                string
849      *            <li>{@code dstBegin} is negative
850      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
851      *                {@code dst.length}</ul>
852      */

853     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
854         checkBoundsBeginEnd(srcBegin, srcEnd, length());
855         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
856         if (isLatin1()) {
857             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
858         } else {
859             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
860         }
861     }
862
863     /**
864      * Copies characters from this string into the destination byte array. Each
865      * byte receives the 8 low-order bits of the corresponding character. The
866      * eight high-order bits of each character are not copied and do not
867      * participate in the transfer in any way.
868      *
869      * <p> The first character to be copied is at index {@code srcBegin}; the
870      * last character to be copied is at index {@code srcEnd-1}.  The total
871      * number of characters to be copied is {@code srcEnd-srcBegin}. The
872      * characters, converted to bytes, are copied into the subarray of {@code
873      * dst} starting at index {@code dstBegin} and ending at index:
874      *
875      * <blockquote><pre>
876      *     dstBegin + (srcEnd-srcBegin) - 1
877      * </pre></blockquote>
878      *
879      * @deprecated  This method does not properly convert characters into
880      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
881      * {@link #getBytes()} method, which uses the platform's default charset.
882      *
883      * @param  srcBegin
884      *         Index of the first character in the string to copy
885      *
886      * @param  srcEnd
887      *         Index after the last character in the string to copy
888      *
889      * @param  dst
890      *         The destination array
891      *
892      * @param  dstBegin
893      *         The start offset in the destination array
894      *
895      * @throws  IndexOutOfBoundsException
896      *          If any of the following is true:
897      *          <ul>
898      *            <li> {@code srcBegin} is negative
899      *            <li> {@code srcBegin} is greater than {@code srcEnd}
900      *            <li> {@code srcEnd} is greater than the length of this String
901      *            <li> {@code dstBegin} is negative
902      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
903      *                 dst.length}
904      *          </ul>
905      */

906     @Deprecated(since="1.1")
907     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
908         checkBoundsBeginEnd(srcBegin, srcEnd, length());
909         Objects.requireNonNull(dst);
910         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
911         if (isLatin1()) {
912             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
913         } else {
914             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
915         }
916     }
917
918     /**
919      * Encodes this {@code String} into a sequence of bytes using the named
920      * charset, storing the result into a new byte array.
921      *
922      * <p> The behavior of this method when this string cannot be encoded in
923      * the given charset is unspecified.  The {@link
924      * java.nio.charset.CharsetEncoder} class should be used when more control
925      * over the encoding process is required.
926      *
927      * @param  charsetName
928      *         The name of a supported {@linkplain java.nio.charset.Charset
929      *         charset}
930      *
931      * @return  The resultant byte array
932      *
933      * @throws  UnsupportedEncodingException
934      *          If the named charset is not supported
935      *
936      * @since  1.1
937      */

938     public byte[] getBytes(String charsetName)
939             throws UnsupportedEncodingException {
940         if (charsetName == nullthrow new NullPointerException();
941         return StringCoding.encode(charsetName, coder(), value);
942     }
943
944     /**
945      * Encodes this {@code String} into a sequence of bytes using the given
946      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
947      * new byte array.
948      *
949      * <p> This method always replaces malformed-input and unmappable-character
950      * sequences with this charset's default replacement byte array.  The
951      * {@link java.nio.charset.CharsetEncoder} class should be used when more
952      * control over the encoding process is required.
953      *
954      * @param  charset
955      *         The {@linkplain java.nio.charset.Charset} to be used to encode
956      *         the {@code String}
957      *
958      * @return  The resultant byte array
959      *
960      * @since  1.6
961      */

962     public byte[] getBytes(Charset charset) {
963         if (charset == nullthrow new NullPointerException();
964         return StringCoding.encode(charset, coder(), value);
965      }
966
967     /**
968      * Encodes this {@code String} into a sequence of bytes using the
969      * platform's default charset, storing the result into a new byte array.
970      *
971      * <p> The behavior of this method when this string cannot be encoded in
972      * the default charset is unspecified.  The {@link
973      * java.nio.charset.CharsetEncoder} class should be used when more control
974      * over the encoding process is required.
975      *
976      * @return  The resultant byte array
977      *
978      * @since      1.1
979      */

980     public byte[] getBytes() {
981         return StringCoding.encode(coder(), value);
982     }
983
984     /**
985      * Compares this string to the specified object.  The result is {@code
986      * trueif and only if the argument is not {@code null} and is a {@code
987      * String} object that represents the same sequence of characters as this
988      * object.
989      *
990      * <p>For finer-grained String comparison, refer to
991      * {@link java.text.Collator}.
992      *
993      * @param  anObject
994      *         The object to compare this {@code String} against
995      *
996      * @return  {@code trueif the given object represents a {@code String}
997      *          equivalent to this string, {@code false} otherwise
998      *
999      * @see  #compareTo(String)
1000      * @see  #equalsIgnoreCase(String)
1001      */

1002     public boolean equals(Object anObject) {
1003         if (this == anObject) {
1004             return true;
1005         }
1006         if (anObject instanceof String) {
1007             String aString = (String)anObject;
1008             if (coder() == aString.coder()) {
1009                 return isLatin1() ? StringLatin1.equals(value, aString.value)
1010                                   : StringUTF16.equals(value, aString.value);
1011             }
1012         }
1013         return false;
1014     }
1015
1016     /**
1017      * Compares this string to the specified {@code StringBuffer}.  The result
1018      * is {@code trueif and only if this {@code String} represents the same
1019      * sequence of characters as the specified {@code StringBuffer}. This method
1020      * synchronizes on the {@code StringBuffer}.
1021      *
1022      * <p>For finer-grained String comparison, refer to
1023      * {@link java.text.Collator}.
1024      *
1025      * @param  sb
1026      *         The {@code StringBuffer} to compare this {@code String} against
1027      *
1028      * @return  {@code trueif this {@code String} represents the same
1029      *          sequence of characters as the specified {@code StringBuffer},
1030      *          {@code false} otherwise
1031      *
1032      * @since  1.4
1033      */

1034     public boolean contentEquals(StringBuffer sb) {
1035         return contentEquals((CharSequence)sb);
1036     }
1037
1038     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1039         int len = length();
1040         if (len != sb.length()) {
1041             return false;
1042         }
1043         byte v1[] = value;
1044         byte v2[] = sb.getValue();
1045         if (coder() == sb.getCoder()) {
1046             int n = v1.length;
1047             for (int i = 0; i < n; i++) {
1048                 if (v1[i] != v2[i]) {
1049                     return false;
1050                 }
1051             }
1052         } else {
1053             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1054                 return false;
1055             }
1056             return StringUTF16.contentEquals(v1, v2, len);
1057         }
1058         return true;
1059     }
1060
1061     /**
1062      * Compares this string to the specified {@code CharSequence}.  The
1063      * result is {@code trueif and only if this {@code String} represents the
1064      * same sequence of char values as the specified sequence. Note that if the
1065      * {@code CharSequence} is a {@code StringBuffer} then the method
1066      * synchronizes on it.
1067      *
1068      * <p>For finer-grained String comparison, refer to
1069      * {@link java.text.Collator}.
1070      *
1071      * @param  cs
1072      *         The sequence to compare this {@code String} against
1073      *
1074      * @return  {@code trueif this {@code String} represents the same
1075      *          sequence of char values as the specified sequence, {@code
1076      *          false} otherwise
1077      *
1078      * @since  1.5
1079      */

1080     public boolean contentEquals(CharSequence cs) {
1081         // Argument is a StringBuffer, StringBuilder
1082         if (cs instanceof AbstractStringBuilder) {
1083             if (cs instanceof StringBuffer) {
1084                 synchronized(cs) {
1085                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1086                 }
1087             } else {
1088                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1089             }
1090         }
1091         // Argument is a String
1092         if (cs instanceof String) {
1093             return equals(cs);
1094         }
1095         // Argument is a generic CharSequence
1096         int n = cs.length();
1097         if (n != length()) {
1098             return false;
1099         }
1100         byte[] val = this.value;
1101         if (isLatin1()) {
1102             for (int i = 0; i < n; i++) {
1103                 if ((val[i] & 0xff) != cs.charAt(i)) {
1104                     return false;
1105                 }
1106             }
1107         } else {
1108             if (!StringUTF16.contentEquals(val, cs, n)) {
1109                 return false;
1110             }
1111         }
1112         return true;
1113     }
1114
1115     /**
1116      * Compares this {@code String} to another {@code String}, ignoring case
1117      * considerations.  Two strings are considered equal ignoring case if they
1118      * are of the same length and corresponding characters in the two strings
1119      * are equal ignoring case.
1120      *
1121      * <p> Two characters {@code c1} and {@code c2} are considered the same
1122      * ignoring case if at least one of the following is true:
1123      * <ul>
1124      *   <li> The two characters are the same (as compared by the
1125      *        {@code ==} operator)
1126      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1127      *        on each character produces the same result
1128      * </ul>
1129      *
1130      * <p>Note that this method does <em>not</em> take locale into account, and
1131      * will result in unsatisfactory results for certain locales.  The
1132      * {@link java.text.Collator} class provides locale-sensitive comparison.
1133      *
1134      * @param  anotherString
1135      *         The {@code String} to compare this {@code String} against
1136      *
1137      * @return  {@code trueif the argument is not {@code null} and it
1138      *          represents an equivalent {@code String} ignoring case; {@code
1139      *          false} otherwise
1140      *
1141      * @see  #equals(Object)
1142      */

1143     public boolean equalsIgnoreCase(String anotherString) {
1144         return (this == anotherString) ? true
1145                 : (anotherString != null)
1146                 && (anotherString.length() == length())
1147                 && regionMatches(true, 0, anotherString, 0, length());
1148     }
1149
1150     /**
1151      * Compares two strings lexicographically.
1152      * The comparison is based on the Unicode value of each character in
1153      * the strings. The character sequence represented by this
1154      * {@code String} object is compared lexicographically to the
1155      * character sequence represented by the argument string. The result is
1156      * a negative integer if this {@code String} object
1157      * lexicographically precedes the argument string. The result is a
1158      * positive integer if this {@code String} object lexicographically
1159      * follows the argument string. The result is zero if the strings
1160      * are equal; {@code compareTo} returns {@code 0} exactly when
1161      * the {@link #equals(Object)} method would return {@code true}.
1162      * <p>
1163      * This is the definition of lexicographic ordering. If two strings are
1164      * different, then either they have different characters at some index
1165      * that is a valid index for both strings, or their lengths are different,
1166      * or both. If they have different characters at one or more index
1167      * positions, let <i>k</i> be the smallest such index; then the string
1168      * whose character at position <i>k</i> has the smaller value, as
1169      * determined by using the {@code <} operator, lexicographically precedes the
1170      * other string. In this case, {@code compareTo} returns the
1171      * difference of the two character values at position {@code k} in
1172      * the two string -- that is, the value:
1173      * <blockquote><pre>
1174      * this.charAt(k)-anotherString.charAt(k)
1175      * </pre></blockquote>
1176      * If there is no index position at which they differ, then the shorter
1177      * string lexicographically precedes the longer string. In this case,
1178      * {@code compareTo} returns the difference of the lengths of the
1179      * strings -- that is, the value:
1180      * <blockquote><pre>
1181      * this.length()-anotherString.length()
1182      * </pre></blockquote>
1183      *
1184      * <p>For finer-grained String comparison, refer to
1185      * {@link java.text.Collator}.
1186      *
1187      * @param   anotherString   the {@code String} to be compared.
1188      * @return  the value {@code 0} if the argument string is equal to
1189      *          this string; a value less than {@code 0} if this string
1190      *          is lexicographically less than the string argument; and a
1191      *          value greater than {@code 0} if this string is
1192      *          lexicographically greater than the string argument.
1193      */

1194     public int compareTo(String anotherString) {
1195         byte v1[] = value;
1196         byte v2[] = anotherString.value;
1197         if (coder() == anotherString.coder()) {
1198             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1199                               : StringUTF16.compareTo(v1, v2);
1200         }
1201         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1202                           : StringUTF16.compareToLatin1(v1, v2);
1203      }
1204
1205     /**
1206      * A Comparator that orders {@code String} objects as by
1207      * {@code compareToIgnoreCase}. This comparator is serializable.
1208      * <p>
1209      * Note that this Comparator does <em>not</em> take locale into account,
1210      * and will result in an unsatisfactory ordering for certain locales.
1211      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1212      *
1213      * @see     java.text.Collator
1214      * @since   1.2
1215      */

1216     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1217                                          = new CaseInsensitiveComparator();
1218     private static class CaseInsensitiveComparator
1219             implements Comparator<String>, java.io.Serializable {
1220         // use serialVersionUID from JDK 1.2.2 for interoperability
1221         private static final long serialVersionUID = 8575799808933029326L;
1222
1223         public int compare(String s1, String s2) {
1224             byte v1[] = s1.value;
1225             byte v2[] = s2.value;
1226             if (s1.coder() == s2.coder()) {
1227                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1228                                      : StringUTF16.compareToCI(v1, v2);
1229             }
1230             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1231                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1232         }
1233
1234         /** Replaces the de-serialized object. */
1235         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1236     }
1237
1238     /**
1239      * Compares two strings lexicographically, ignoring case
1240      * differences. This method returns an integer whose sign is that of
1241      * calling {@code compareTo} with normalized versions of the strings
1242      * where case differences have been eliminated by calling
1243      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1244      * each character.
1245      * <p>
1246      * Note that this method does <em>not</em> take locale into account,
1247      * and will result in an unsatisfactory ordering for certain locales.
1248      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1249      *
1250      * @param   str   the {@code String} to be compared.
1251      * @return  a negative integer, zero, or a positive integer as the
1252      *          specified String is greater than, equal to, or less
1253      *          than this String, ignoring case considerations.
1254      * @see     java.text.Collator
1255      * @since   1.2
1256      */

1257     public int compareToIgnoreCase(String str) {
1258         return CASE_INSENSITIVE_ORDER.compare(this, str);
1259     }
1260
1261     /**
1262      * Tests if two string regions are equal.
1263      * <p>
1264      * A substring of this {@code String} object is compared to a substring
1265      * of the argument other. The result is true if these substrings
1266      * represent identical character sequences. The substring of this
1267      * {@code String} object to be compared begins at index {@code toffset}
1268      * and has length {@code len}. The substring of other to be compared
1269      * begins at index {@code ooffset} and has length {@code len}. The
1270      * result is {@code falseif and only if at least one of the following
1271      * is true:
1272      * <ul><li>{@code toffset} is negative.
1273      * <li>{@code ooffset} is negative.
1274      * <li>{@code toffset+len} is greater than the length of this
1275      * {@code String} object.
1276      * <li>{@code ooffset+len} is greater than the length of the other
1277      * argument.
1278      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1279      * such that:
1280      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1281      * <i>k</i>{@code )}
1282      * </ul>
1283      *
1284      * <p>Note that this method does <em>not</em> take locale into account.  The
1285      * {@link java.text.Collator} class provides locale-sensitive comparison.
1286      *
1287      * @param   toffset   the starting offset of the subregion in this string.
1288      * @param   other     the string argument.
1289      * @param   ooffset   the starting offset of the subregion in the string
1290      *                    argument.
1291      * @param   len       the number of characters to compare.
1292      * @return  {@code trueif the specified subregion of this string
1293      *          exactly matches the specified subregion of the string argument;
1294      *          {@code false} otherwise.
1295      */

1296     public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1297         byte tv[] = value;
1298         byte ov[] = other.value;
1299         // Note: toffset, ooffset, or len might be near -1>>>1.
1300         if ((ooffset < 0) || (toffset < 0) ||
1301              (toffset > (long)length() - len) ||
1302              (ooffset > (long)other.length() - len)) {
1303             return false;
1304         }
1305         if (coder() == other.coder()) {
1306             if (!isLatin1() && (len > 0)) {
1307                 toffset = toffset << 1;
1308                 ooffset = ooffset << 1;
1309                 len = len << 1;
1310             }
1311             while (len-- > 0) {
1312                 if (tv[toffset++] != ov[ooffset++]) {
1313                     return false;
1314                 }
1315             }
1316         } else {
1317             if (coder() == LATIN1) {
1318                 while (len-- > 0) {
1319                     if (StringLatin1.getChar(tv, toffset++) !=
1320                         StringUTF16.getChar(ov, ooffset++)) {
1321                         return false;
1322                     }
1323                 }
1324             } else {
1325                 while (len-- > 0) {
1326                     if (StringUTF16.getChar(tv, toffset++) !=
1327                         StringLatin1.getChar(ov, ooffset++)) {
1328                         return false;
1329                     }
1330                 }
1331             }
1332         }
1333         return true;
1334     }
1335
1336     /**
1337      * Tests if two string regions are equal.
1338      * <p>
1339      * A substring of this {@code String} object is compared to a substring
1340      * of the argument {@code other}. The result is {@code trueif these
1341      * substrings represent character sequences that are the same, ignoring
1342      * case if and only if {@code ignoreCase} is true. The substring of
1343      * this {@code String} object to be compared begins at index
1344      * {@code toffset} and has length {@code len}. The substring of
1345      * {@code other} to be compared begins at index {@code ooffset} and
1346      * has length {@code len}. The result is {@code falseif and only if
1347      * at least one of the following is true:
1348      * <ul><li>{@code toffset} is negative.
1349      * <li>{@code ooffset} is negative.
1350      * <li>{@code toffset+len} is greater than the length of this
1351      * {@code String} object.
1352      * <li>{@code ooffset+len} is greater than the length of the other
1353      * argument.
1354      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1355      * integer <i>k</i> less than {@code len} such that:
1356      * <blockquote><pre>
1357      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1358      * </pre></blockquote>
1359      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1360      * integer <i>k</i> less than {@code len} such that:
1361      * <blockquote><pre>
1362      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1363      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1364      * </pre></blockquote>
1365      * </ul>
1366      *
1367      * <p>Note that this method does <em>not</em> take locale into account,
1368      * and will result in unsatisfactory results for certain locales when
1369      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1370      * provides locale-sensitive comparison.
1371      *
1372      * @param   ignoreCase   if {@code true}, ignore case when comparing
1373      *                       characters.
1374      * @param   toffset      the starting offset of the subregion in this
1375      *                       string.
1376      * @param   other        the string argument.
1377      * @param   ooffset      the starting offset of the subregion in the string
1378      *                       argument.
1379      * @param   len          the number of characters to compare.
1380      * @return  {@code trueif the specified subregion of this string
1381      *          matches the specified subregion of the string argument;
1382      *          {@code false} otherwise. Whether the matching is exact
1383      *          or case insensitive depends on the {@code ignoreCase}
1384      *          argument.
1385      */

1386     public boolean regionMatches(boolean ignoreCase, int toffset,
1387             String other, int ooffset, int len) {
1388         if (!ignoreCase) {
1389             return regionMatches(toffset, other, ooffset, len);
1390         }
1391         // Note: toffset, ooffset, or len might be near -1>>>1.
1392         if ((ooffset < 0) || (toffset < 0)
1393                 || (toffset > (long)length() - len)
1394                 || (ooffset > (long)other.length() - len)) {
1395             return false;
1396         }
1397         byte tv[] = value;
1398         byte ov[] = other.value;
1399         if (coder() == other.coder()) {
1400             return isLatin1()
1401               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1402               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1403         }
1404         return isLatin1()
1405               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1406               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1407     }
1408
1409     /**
1410      * Tests if the substring of this string beginning at the
1411      * specified index starts with the specified prefix.
1412      *
1413      * @param   prefix    the prefix.
1414      * @param   toffset   where to begin looking in this string.
1415      * @return  {@code trueif the character sequence represented by the
1416      *          argument is a prefix of the substring of this object starting
1417      *          at index {@code toffset}; {@code false} otherwise.
1418      *          The result is {@code falseif {@code toffset} is
1419      *          negative or greater than the length of this
1420      *          {@code String} object; otherwise the result is the same
1421      *          as the result of the expression
1422      *          <pre>
1423      *          this.substring(toffset).startsWith(prefix)
1424      *          </pre>
1425      */

1426     public boolean startsWith(String prefix, int toffset) {
1427         // Note: toffset might be near -1>>>1.
1428         if (toffset < 0 || toffset > length() - prefix.length()) {
1429             return false;
1430         }
1431         byte ta[] = value;
1432         byte pa[] = prefix.value;
1433         int po = 0;
1434         int pc = pa.length;
1435         if (coder() == prefix.coder()) {
1436             int to = isLatin1() ? toffset : toffset << 1;
1437             while (po < pc) {
1438                 if (ta[to++] != pa[po++]) {
1439                     return false;
1440                 }
1441             }
1442         } else {
1443             if (isLatin1()) {  // && pcoder == UTF16
1444                 return false;
1445             }
1446             // coder == UTF16 && pcoder == LATIN1)
1447             while (po < pc) {
1448                 if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1449                     return false;
1450                }
1451             }
1452         }
1453         return true;
1454     }
1455
1456     /**
1457      * Tests if this string starts with the specified prefix.
1458      *
1459      * @param   prefix   the prefix.
1460      * @return  {@code trueif the character sequence represented by the
1461      *          argument is a prefix of the character sequence represented by
1462      *          this string; {@code false} otherwise.
1463      *          Note also that {@code true} will be returned if the
1464      *          argument is an empty string or is equal to this
1465      *          {@code String} object as determined by the
1466      *          {@link #equals(Object)} method.
1467      * @since   1.0
1468      */

1469     public boolean startsWith(String prefix) {
1470         return startsWith(prefix, 0);
1471     }
1472
1473     /**
1474      * Tests if this string ends with the specified suffix.
1475      *
1476      * @param   suffix   the suffix.
1477      * @return  {@code trueif the character sequence represented by the
1478      *          argument is a suffix of the character sequence represented by
1479      *          this object; {@code false} otherwise. Note that the
1480      *          result will be {@code trueif the argument is the
1481      *          empty string or is equal to this {@code String} object
1482      *          as determined by the {@link #equals(Object)} method.
1483      */

1484     public boolean endsWith(String suffix) {
1485         return startsWith(suffix, length() - suffix.length());
1486     }
1487
1488     /**
1489      * Returns a hash code for this string. The hash code for a
1490      * {@code String} object is computed as
1491      * <blockquote><pre>
1492      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1493      * </pre></blockquote>
1494      * using {@code int} arithmetic, where {@code s[i]} is the
1495      * <i>i</i>th character of the string, {@code n} is the length of
1496      * the string, and {@code ^} indicates exponentiation.
1497      * (The hash value of the empty string is zero.)
1498      *
1499      * @return  a hash code value for this object.
1500      */

1501     public int hashCode() {
1502         int h = hash;
1503         if (h == 0 && value.length > 0) {
1504             hash = h = isLatin1() ? StringLatin1.hashCode(value)
1505                                   : StringUTF16.hashCode(value);
1506         }
1507         return h;
1508     }
1509
1510     /**
1511      * Returns the index within this string of the first occurrence of
1512      * the specified character. If a character with value
1513      * {@code ch} occurs in the character sequence represented by
1514      * this {@code String} object, then the index (in Unicode
1515      * code units) of the first such occurrence is returned. For
1516      * values of {@code ch} in the range from 0 to 0xFFFF
1517      * (inclusive), this is the smallest value <i>k</i> such that:
1518      * <blockquote><pre>
1519      * this.charAt(<i>k</i>) == ch
1520      * </pre></blockquote>
1521      * is true. For other values of {@code ch}, it is the
1522      * smallest value <i>k</i> such that:
1523      * <blockquote><pre>
1524      * this.codePointAt(<i>k</i>) == ch
1525      * </pre></blockquote>
1526      * is true. In either caseif no such character occurs in this
1527      * string, then {@code -1} is returned.
1528      *
1529      * @param   ch   a character (Unicode code point).
1530      * @return  the index of the first occurrence of the character in the
1531      *          character sequence represented by this object, or
1532      *          {@code -1} if the character does not occur.
1533      */

1534     public int indexOf(int ch) {
1535         return indexOf(ch, 0);
1536     }
1537
1538     /**
1539      * Returns the index within this string of the first occurrence of the
1540      * specified character, starting the search at the specified index.
1541      * <p>
1542      * If a character with value {@code ch} occurs in the
1543      * character sequence represented by this {@code String}
1544      * object at an index no smaller than {@code fromIndex}, then
1545      * the index of the first such occurrence is returned. For values
1546      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1547      * this is the smallest value <i>k</i> such that:
1548      * <blockquote><pre>
1549      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1550      * </pre></blockquote>
1551      * is true. For other values of {@code ch}, it is the
1552      * smallest value <i>k</i> such that:
1553      * <blockquote><pre>
1554      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1555      * </pre></blockquote>
1556      * is true. In either caseif no such character occurs in this
1557      * string at or after position {@code fromIndex}, then
1558      * {@code -1} is returned.
1559      *
1560      * <p>
1561      * There is no restriction on the value of {@code fromIndex}. If it
1562      * is negative, it has the same effect as if it were zero: this entire
1563      * string may be searched. If it is greater than the length of this
1564      * string, it has the same effect as if it were equal to the length of
1565      * this string: {@code -1} is returned.
1566      *
1567      * <p>All indices are specified in {@code char} values
1568      * (Unicode code units).
1569      *
1570      * @param   ch          a character (Unicode code point).
1571      * @param   fromIndex   the index to start the search from.
1572      * @return  the index of the first occurrence of the character in the
1573      *          character sequence represented by this object that is greater
1574      *          than or equal to {@code fromIndex}, or {@code -1}
1575      *          if the character does not occur.
1576      */

1577     public int indexOf(int ch, int fromIndex) {
1578         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1579                           : StringUTF16.indexOf(value, ch, fromIndex);
1580     }
1581
1582     /**
1583      * Returns the index within this string of the last occurrence of
1584      * the specified character. For values of {@code ch} in the
1585      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1586      * units) returned is the largest value <i>k</i> such that:
1587      * <blockquote><pre>
1588      * this.charAt(<i>k</i>) == ch
1589      * </pre></blockquote>
1590      * is true. For other values of {@code ch}, it is the
1591      * largest value <i>k</i> such that:
1592      * <blockquote><pre>
1593      * this.codePointAt(<i>k</i>) == ch
1594      * </pre></blockquote>
1595      * is true.  In either caseif no such character occurs in this
1596      * string, then {@code -1} is returned.  The
1597      * {@code String} is searched backwards starting at the last
1598      * character.
1599      *
1600      * @param   ch   a character (Unicode code point).
1601      * @return  the index of the last occurrence of the character in the
1602      *          character sequence represented by this object, or
1603      *          {@code -1} if the character does not occur.
1604      */

1605     public int lastIndexOf(int ch) {
1606         return lastIndexOf(ch, length() - 1);
1607     }
1608
1609     /**
1610      * Returns the index within this string of the last occurrence of
1611      * the specified character, searching backward starting at the
1612      * specified index. For values of {@code ch} in the range
1613      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1614      * value <i>k</i> such that:
1615      * <blockquote><pre>
1616      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1617      * </pre></blockquote>
1618      * is true. For other values of {@code ch}, it is the
1619      * largest value <i>k</i> such that:
1620      * <blockquote><pre>
1621      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1622      * </pre></blockquote>
1623      * is true. In either caseif no such character occurs in this
1624      * string at or before position {@code fromIndex}, then
1625      * {@code -1} is returned.
1626      *
1627      * <p>All indices are specified in {@code char} values
1628      * (Unicode code units).
1629      *
1630      * @param   ch          a character (Unicode code point).
1631      * @param   fromIndex   the index to start the search from. There is no
1632      *          restriction on the value of {@code fromIndex}. If it is
1633      *          greater than or equal to the length of this string, it has
1634      *          the same effect as if it were equal to one less than the
1635      *          length of this string: this entire string may be searched.
1636      *          If it is negative, it has the same effect as if it were -1:
1637      *          -1 is returned.
1638      * @return  the index of the last occurrence of the character in the
1639      *          character sequence represented by this object that is less
1640      *          than or equal to {@code fromIndex}, or {@code -1}
1641      *          if the character does not occur before that point.
1642      */

1643     public int lastIndexOf(int ch, int fromIndex) {
1644         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1645                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
1646     }
1647
1648     /**
1649      * Returns the index within this string of the first occurrence of the
1650      * specified substring.
1651      *
1652      * <p>The returned index is the smallest value {@code k} for which:
1653      * <pre>{@code
1654      * this.startsWith(str, k)
1655      * }</pre>
1656      * If no such value of {@code k} exists, then {@code -1} is returned.
1657      *
1658      * @param   str   the substring to search for.
1659      * @return  the index of the first occurrence of the specified substring,
1660      *          or {@code -1} if there is no such occurrence.
1661      */

1662     public int indexOf(String str) {
1663         if (coder() == str.coder()) {
1664             return isLatin1() ? StringLatin1.indexOf(value, str.value)
1665                               : StringUTF16.indexOf(value, str.value);
1666         }
1667         if (coder() == LATIN1) {  // str.coder == UTF16
1668             return -1;
1669         }
1670         return StringUTF16.indexOfLatin1(value, str.value);
1671     }
1672
1673     /**
1674      * Returns the index within this string of the first occurrence of the
1675      * specified substring, starting at the specified index.
1676      *
1677      * <p>The returned index is the smallest value {@code k} for which:
1678      * <pre>{@code
1679      *     k >= Math.min(fromIndex, this.length()) &&
1680      *                   this.startsWith(str, k)
1681      * }</pre>
1682      * If no such value of {@code k} exists, then {@code -1} is returned.
1683      *
1684      * @param   str         the substring to search for.
1685      * @param   fromIndex   the index from which to start the search.
1686      * @return  the index of the first occurrence of the specified substring,
1687      *          starting at the specified index,
1688      *          or {@code -1} if there is no such occurrence.
1689      */

1690     public int indexOf(String str, int fromIndex) {
1691         return indexOf(value, coder(), length(), str, fromIndex);
1692     }
1693
1694     /**
1695      * Code shared by String and AbstractStringBuilder to do searches. The
1696      * source is the character array being searched, and the target
1697      * is the string being searched for.
1698      *
1699      * @param   src       the characters being searched.
1700      * @param   srcCoder  the coder of the source string.
1701      * @param   srcCount  length of the source string.
1702      * @param   tgtStr    the characters being searched for.
1703      * @param   fromIndex the index to begin searching from.
1704      */

1705     static int indexOf(byte[] src, byte srcCoder, int srcCount,
1706                        String tgtStr, int fromIndex) {
1707         byte[] tgt    = tgtStr.value;
1708         byte tgtCoder = tgtStr.coder();
1709         int tgtCount  = tgtStr.length();
1710
1711         if (fromIndex >= srcCount) {
1712             return (tgtCount == 0 ? srcCount : -1);
1713         }
1714         if (fromIndex < 0) {
1715             fromIndex = 0;
1716         }
1717         if (tgtCount == 0) {
1718             return fromIndex;
1719         }
1720         if (tgtCount > srcCount) {
1721             return -1;
1722         }
1723         if (srcCoder == tgtCoder) {
1724             return srcCoder == LATIN1
1725                 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1726                 : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1727         }
1728         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1729             return -1;
1730         }
1731         // srcCoder == UTF16 && tgtCoder == LATIN1) {
1732         return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1733     }
1734
1735     /**
1736      * Returns the index within this string of the last occurrence of the
1737      * specified substring.  The last occurrence of the empty string ""
1738      * is considered to occur at the index value {@code this.length()}.
1739      *
1740      * <p>The returned index is the largest value {@code k} for which:
1741      * <pre>{@code
1742      * this.startsWith(str, k)
1743      * }</pre>
1744      * If no such value of {@code k} exists, then {@code -1} is returned.
1745      *
1746      * @param   str   the substring to search for.
1747      * @return  the index of the last occurrence of the specified substring,
1748      *          or {@code -1} if there is no such occurrence.
1749      */

1750     public int lastIndexOf(String str) {
1751         return lastIndexOf(str, length());
1752     }
1753
1754     /**
1755      * Returns the index within this string of the last occurrence of the
1756      * specified substring, searching backward starting at the specified index.
1757      *
1758      * <p>The returned index is the largest value {@code k} for which:
1759      * <pre>{@code
1760      *     k <= Math.min(fromIndex, this.length()) &&
1761      *                   this.startsWith(str, k)
1762      * }</pre>
1763      * If no such value of {@code k} exists, then {@code -1} is returned.
1764      *
1765      * @param   str         the substring to search for.
1766      * @param   fromIndex   the index to start the search from.
1767      * @return  the index of the last occurrence of the specified substring,
1768      *          searching backward from the specified index,
1769      *          or {@code -1} if there is no such occurrence.
1770      */

1771     public int lastIndexOf(String str, int fromIndex) {
1772         return lastIndexOf(value, coder(), length(), str, fromIndex);
1773     }
1774
1775     /**
1776      * Code shared by String and AbstractStringBuilder to do searches. The
1777      * source is the character array being searched, and the target
1778      * is the string being searched for.
1779      *
1780      * @param   src         the characters being searched.
1781      * @param   srcCoder    coder handles the mapping between bytes/chars
1782      * @param   srcCount    count of the source string.
1783      * @param   tgt         the characters being searched for.
1784      * @param   fromIndex   the index to begin searching from.
1785      */

1786     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1787                            String tgtStr, int fromIndex) {
1788         byte[] tgt = tgtStr.value;
1789         byte tgtCoder = tgtStr.coder();
1790         int tgtCount = tgtStr.length();
1791         /*
1792          * Check arguments; return immediately where possible. For
1793          * consistency, don't check for null str.
1794          */

1795         int rightIndex = srcCount - tgtCount;
1796         if (fromIndex > rightIndex) {
1797             fromIndex = rightIndex;
1798         }
1799         if (fromIndex < 0) {
1800             return -1;
1801         }
1802         /* Empty string always matches. */
1803         if (tgtCount == 0) {
1804             return fromIndex;
1805         }
1806         if (srcCoder == tgtCoder) {
1807             return srcCoder == LATIN1
1808                 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1809                 : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1810         }
1811         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1812             return -1;
1813         }
1814         // srcCoder == UTF16 && tgtCoder == LATIN1
1815         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1816     }
1817
1818     /**
1819      * Returns a string that is a substring of this string. The
1820      * substring begins with the character at the specified index and
1821      * extends to the end of this string. <p>
1822      * Examples:
1823      * <blockquote><pre>
1824      * "unhappy".substring(2) returns "happy"
1825      * "Harbison".substring(3) returns "bison"
1826      * "emptiness".substring(9) returns "" (an empty string)
1827      * </pre></blockquote>
1828      *
1829      * @param      beginIndex   the beginning index, inclusive.
1830      * @return     the specified substring.
1831      * @exception  IndexOutOfBoundsException  if
1832      *             {@code beginIndex} is negative or larger than the
1833      *             length of this {@code String} object.
1834      */

1835     public String substring(int beginIndex) {
1836         if (beginIndex < 0) {
1837             throw new StringIndexOutOfBoundsException(beginIndex);
1838         }
1839         int subLen = length() - beginIndex;
1840         if (subLen < 0) {
1841             throw new StringIndexOutOfBoundsException(subLen);
1842         }
1843         if (beginIndex == 0) {
1844             return this;
1845         }
1846         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1847                           : StringUTF16.newString(value, beginIndex, subLen);
1848     }
1849
1850     /**
1851      * Returns a string that is a substring of this string. The
1852      * substring begins at the specified {@code beginIndex} and
1853      * extends to the character at index {@code endIndex - 1}.
1854      * Thus the length of the substring is {@code endIndex-beginIndex}.
1855      * <p>
1856      * Examples:
1857      * <blockquote><pre>
1858      * "hamburger".substring(4, 8) returns "urge"
1859      * "smiles".substring(1, 5) returns "mile"
1860      * </pre></blockquote>
1861      *
1862      * @param      beginIndex   the beginning index, inclusive.
1863      * @param      endIndex     the ending index, exclusive.
1864      * @return     the specified substring.
1865      * @exception  IndexOutOfBoundsException  if the
1866      *             {@code beginIndex} is negative, or
1867      *             {@code endIndex} is larger than the length of
1868      *             this {@code String} object, or
1869      *             {@code beginIndex} is larger than
1870      *             {@code endIndex}.
1871      */

1872     public String substring(int beginIndex, int endIndex) {
1873         int length = length();
1874         checkBoundsBeginEnd(beginIndex, endIndex, length);
1875         int subLen = endIndex - beginIndex;
1876         if (beginIndex == 0 && endIndex == length) {
1877             return this;
1878         }
1879         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1880                           : StringUTF16.newString(value, beginIndex, subLen);
1881     }
1882
1883     /**
1884      * Returns a character sequence that is a subsequence of this sequence.
1885      *
1886      * <p> An invocation of this method of the form
1887      *
1888      * <blockquote><pre>
1889      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1890      *
1891      * behaves in exactly the same way as the invocation
1892      *
1893      * <blockquote><pre>
1894      * str.substring(begin,&nbsp;end)</pre></blockquote>
1895      *
1896      * @apiNote
1897      * This method is defined so that the {@code String} class can implement
1898      * the {@link CharSequence} interface.
1899      *
1900      * @param   beginIndex   the begin index, inclusive.
1901      * @param   endIndex     the end index, exclusive.
1902      * @return  the specified subsequence.
1903      *
1904      * @throws  IndexOutOfBoundsException
1905      *          if {@code beginIndex} or {@code endIndex} is negative,
1906      *          if {@code endIndex} is greater than {@code length()},
1907      *          or if {@code beginIndex} is greater than {@code endIndex}
1908      *
1909      * @since 1.4
1910      * @spec JSR-51
1911      */

1912     public CharSequence subSequence(int beginIndex, int endIndex) {
1913         return this.substring(beginIndex, endIndex);
1914     }
1915
1916     /**
1917      * Concatenates the specified string to the end of this string.
1918      * <p>
1919      * If the length of the argument string is {@code 0}, then this
1920      * {@code String} object is returned. Otherwise, a
1921      * {@code String} object is returned that represents a character
1922      * sequence that is the concatenation of the character sequence
1923      * represented by this {@code String} object and the character
1924      * sequence represented by the argument string.<p>
1925      * Examples:
1926      * <blockquote><pre>
1927      * "cares".concat("s") returns "caress"
1928      * "to".concat("get").concat("her") returns "together"
1929      * </pre></blockquote>
1930      *
1931      * @param   str   the {@code String} that is concatenated to the end
1932      *                of this {@code String}.
1933      * @return  a string that represents the concatenation of this object's
1934      *          characters followed by the string argument's characters.
1935      */

1936     public String concat(String str) {
1937         if (str.isEmpty()) {
1938             return this;
1939         }
1940         if (coder() == str.coder()) {
1941             byte[] val = this.value;
1942             byte[] oval = str.value;
1943             int len = val.length + oval.length;
1944             byte[] buf = Arrays.copyOf(val, len);
1945             System.arraycopy(oval, 0, buf, val.length, oval.length);
1946             return new String(buf, coder);
1947         }
1948         int len = length();
1949         int olen = str.length();
1950         byte[] buf = StringUTF16.newBytesFor(len + olen);
1951         getBytes(buf, 0, UTF16);
1952         str.getBytes(buf, len, UTF16);
1953         return new String(buf, UTF16);
1954     }
1955
1956     /**
1957      * Returns a string resulting from replacing all occurrences of
1958      * {@code oldChar} in this string with {@code newChar}.
1959      * <p>
1960      * If the character {@code oldChar} does not occur in the
1961      * character sequence represented by this {@code String} object,
1962      * then a reference to this {@code String} object is returned.
1963      * Otherwise, a {@code String} object is returned that
1964      * represents a character sequence identical to the character sequence
1965      * represented by this {@code String} object, except that every
1966      * occurrence of {@code oldChar} is replaced by an occurrence
1967      * of {@code newChar}.
1968      * <p>
1969      * Examples:
1970      * <blockquote><pre>
1971      * "mesquite in your cellar".replace('e', 'o')
1972      *         returns "mosquito in your collar"
1973      * "the war of baronets".replace('r', 'y')
1974      *         returns "the way of bayonets"
1975      * "sparring with a purple porpoise".replace('p', 't')
1976      *         returns "starring with a turtle tortoise"
1977      * "JonL".replace('q', 'x') returns "JonL" (no change)
1978      * </pre></blockquote>
1979      *
1980      * @param   oldChar   the old character.
1981      * @param   newChar   the new character.
1982      * @return  a string derived from this string by replacing every
1983      *          occurrence of {@code oldChar} with {@code newChar}.
1984      */

1985     public String replace(char oldChar, char newChar) {
1986         if (oldChar != newChar) {
1987             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
1988                                     : StringUTF16.replace(value, oldChar, newChar);
1989             if (ret != null) {
1990                 return ret;
1991             }
1992         }
1993         return this;
1994     }
1995
1996     /**
1997      * Tells whether or not this string matches the given <a
1998      * href="../util/regex/Pattern.html#sum">regular expression</a>.
1999      *
2000      * <p> An invocation of this method of the form
2001      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2002      * same result as the expression
2003      *
2004      * <blockquote>
2005      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2006      * matches(<i>regex</i>, <i>str</i>)}
2007      * </blockquote>
2008      *
2009      * @param   regex
2010      *          the regular expression to which this string is to be matched
2011      *
2012      * @return  {@code trueif, and only ifthis string matches the
2013      *          given regular expression
2014      *
2015      * @throws  PatternSyntaxException
2016      *          if the regular expression's syntax is invalid
2017      *
2018      * @see java.util.regex.Pattern
2019      *
2020      * @since 1.4
2021      * @spec JSR-51
2022      */

2023     public boolean matches(String regex) {
2024         return Pattern.matches(regex, this);
2025     }
2026
2027     /**
2028      * Returns true if and only if this string contains the specified
2029      * sequence of char values.
2030      *
2031      * @param s the sequence to search for
2032      * @return true if this string contains {@code s}, false otherwise
2033      * @since 1.5
2034      */

2035     public boolean contains(CharSequence s) {
2036         return indexOf(s.toString()) >= 0;
2037     }
2038
2039     /**
2040      * Replaces the first substring of this string that matches the given <a
2041      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2042      * given replacement.
2043      *
2044      * <p> An invocation of this method of the form
2045      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2046      * yields exactly the same result as the expression
2047      *
2048      * <blockquote>
2049      * <code>
2050      * {@link java.util.regex.Pattern}.{@link
2051      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2052      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2053      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2054      * </code>
2055      * </blockquote>
2056      *
2057      *<p>
2058      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2059      * replacement string may cause the results to be different than if it were
2060      * being treated as a literal replacement string; see
2061      * {@link java.util.regex.Matcher#replaceFirst}.
2062      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2063      * meaning of these characters, if desired.
2064      *
2065      * @param   regex
2066      *          the regular expression to which this string is to be matched
2067      * @param   replacement
2068      *          the string to be substituted for the first match
2069      *
2070      * @return  The resulting {@code String}
2071      *
2072      * @throws  PatternSyntaxException
2073      *          if the regular expression's syntax is invalid
2074      *
2075      * @see java.util.regex.Pattern
2076      *
2077      * @since 1.4
2078      * @spec JSR-51
2079      */

2080     public String replaceFirst(String regex, String replacement) {
2081         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2082     }
2083
2084     /**
2085      * Replaces each substring of this string that matches the given <a
2086      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2087      * given replacement.
2088      *
2089      * <p> An invocation of this method of the form
2090      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2091      * yields exactly the same result as the expression
2092      *
2093      * <blockquote>
2094      * <code>
2095      * {@link java.util.regex.Pattern}.{@link
2096      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2097      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2098      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2099      * </code>
2100      * </blockquote>
2101      *
2102      *<p>
2103      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2104      * replacement string may cause the results to be different than if it were
2105      * being treated as a literal replacement string; see
2106      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2107      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2108      * meaning of these characters, if desired.
2109      *
2110      * @param   regex
2111      *          the regular expression to which this string is to be matched
2112      * @param   replacement
2113      *          the string to be substituted for each match
2114      *
2115      * @return  The resulting {@code String}
2116      *
2117      * @throws  PatternSyntaxException
2118      *          if the regular expression's syntax is invalid
2119      *
2120      * @see java.util.regex.Pattern
2121      *
2122      * @since 1.4
2123      * @spec JSR-51
2124      */

2125     public String replaceAll(String regex, String replacement) {
2126         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2127     }
2128
2129     /**
2130      * Replaces each substring of this string that matches the literal target
2131      * sequence with the specified literal replacement sequence. The
2132      * replacement proceeds from the beginning of the string to the end, for
2133      * example, replacing "aa" with "b" in the string "aaa" will result in
2134      * "ba" rather than "ab".
2135      *
2136      * @param  target The sequence of char values to be replaced
2137      * @param  replacement The replacement sequence of char values
2138      * @return  The resulting string
2139      * @since 1.5
2140      */

2141     public String replace(CharSequence target, CharSequence replacement) {
2142         String tgtStr = target.toString();
2143         String replStr = replacement.toString();
2144         int j = indexOf(tgtStr);
2145         if (j < 0) {
2146             return this;
2147         }
2148         int tgtLen = tgtStr.length();
2149         int tgtLen1 = Math.max(tgtLen, 1);
2150         int thisLen = length();
2151
2152         int newLenHint = thisLen - tgtLen + replStr.length();
2153         if (newLenHint < 0) {
2154             throw new OutOfMemoryError();
2155         }
2156         StringBuilder sb = new StringBuilder(newLenHint);
2157         int i = 0;
2158         do {
2159             sb.append(this, i, j).append(replStr);
2160             i = j + tgtLen;
2161         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2162         return sb.append(this, i, thisLen).toString();
2163     }
2164
2165     /**
2166      * Splits this string around matches of the given
2167      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2168      *
2169      * <p> The array returned by this method contains each substring of this
2170      * string that is terminated by another substring that matches the given
2171      * expression or is terminated by the end of the string.  The substrings in
2172      * the array are in the order in which they occur in this string.  If the
2173      * expression does not match any part of the input then the resulting array
2174      * has just one element, namely this string.
2175      *
2176      * <p> When there is a positive-width match at the beginning of this
2177      * string then an empty leading substring is included at the beginning
2178      * of the resulting array. A zero-width match at the beginning however
2179      * never produces such empty leading substring.
2180      *
2181      * <p> The {@code limit} parameter controls the number of times the
2182      * pattern is applied and therefore affects the length of the resulting
2183      * array.
2184      * <ul>
2185      *    <li><p>
2186      *    If the <i>limit</i> is positive then the pattern will be applied
2187      *    at most <i>limit</i>&nbsp;-&nbsp;1 times, the array's length will be
2188      *    no greater than <i>limit</i>, and the array's last entry will contain
2189      *    all input beyond the last matched delimiter.</p></li>
2190      *
2191      *    <li><p>
2192      *    If the <i>limit</i> is zero then the pattern will be applied as
2193      *    many times as possible, the array can have any length, and trailing
2194      *    empty strings will be discarded.</p></li>
2195      *
2196      *    <li><p>
2197      *    If the <i>limit</i> is negative then the pattern will be applied
2198      *    as many times as possible and the array can have any length.</p></li>
2199      * </ul>
2200      *
2201      * <p> The string {@code "boo:and:foo"}, for example, yields the
2202      * following results with these parameters:
2203      *
2204      * <blockquote><table class="plain">
2205      * <caption style="display:none">Split example showing regex, limit, and result</caption>
2206      * <thead>
2207      * <tr>
2208      *     <th scope="col">Regex</th>
2209      *     <th scope="col">Limit</th>
2210      *     <th scope="col">Result</th>
2211      * </tr>
2212      * </thead>
2213      * <tbody>
2214      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2215      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2216      *     <td>{@code { "boo""and:foo" }}</td></tr>
2217      * <tr><!-- : -->
2218      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2219      *     <td>{@code { "boo""and""foo" }}</td></tr>
2220      * <tr><!-- : -->
2221      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2222      *     <td>{@code { "boo""and""foo" }}</td></tr>
2223      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2224      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2225      *     <td>{@code { "b"""":and:f""""" }}</td></tr>
2226      * <tr><!-- o -->
2227      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2228      *     <td>{@code { "b"""":and:f""""" }}</td></tr>
2229      * <tr><!-- o -->
2230      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2231      *     <td>{@code { "b"""":and:f" }}</td></tr>
2232      * </tbody>
2233      * </table></blockquote>
2234      *
2235      * <p> An invocation of this method of the form
2236      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2237      * yields the same result as the expression
2238      *
2239      * <blockquote>
2240      * <code>
2241      * {@link java.util.regex.Pattern}.{@link
2242      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2243      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2244      * </code>
2245      * </blockquote>
2246      *
2247      *
2248      * @param  regex
2249      *         the delimiting regular expression
2250      *
2251      * @param  limit
2252      *         the result threshold, as described above
2253      *
2254      * @return  the array of strings computed by splitting this string
2255      *          around matches of the given regular expression
2256      *
2257      * @throws  PatternSyntaxException
2258      *          if the regular expression's syntax is invalid
2259      *
2260      * @see java.util.regex.Pattern
2261      *
2262      * @since 1.4
2263      * @spec JSR-51
2264      */

2265     public String[] split(String regex, int limit) {
2266         /* fastpath if the regex is a
2267          (1)one-char String and this character is not one of the
2268             RegEx's meta characters ".$|()[{^?*+\\", or
2269          (2)two-char String and the first char is the backslash and
2270             the second is not the ascii digit or ascii letter.
2271          */

2272         char ch = 0;
2273         if (((regex.length() == 1 &&
2274              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2275              (regex.length() == 2 &&
2276               regex.charAt(0) == '\\' &&
2277               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2278               ((ch-'a')|('z'-ch)) < 0 &&
2279               ((ch-'A')|('Z'-ch)) < 0)) &&
2280             (ch < Character.MIN_HIGH_SURROGATE ||
2281              ch > Character.MAX_LOW_SURROGATE))
2282         {
2283             int off = 0;
2284             int next = 0;
2285             boolean limited = limit > 0;
2286             ArrayList<String> list = new ArrayList<>();
2287             while ((next = indexOf(ch, off)) != -1) {
2288                 if (!limited || list.size() < limit - 1) {
2289                     list.add(substring(off, next));
2290                     off = next + 1;
2291                 } else {    // last one
2292                     //assert (list.size() == limit - 1);
2293                     int last = length();
2294                     list.add(substring(off, last));
2295                     off = last;
2296                     break;
2297                 }
2298             }
2299             // If no match was found, return this
2300             if (off == 0)
2301                 return new String[]{this};
2302
2303             // Add remaining segment
2304             if (!limited || list.size() < limit)
2305                 list.add(substring(off, length()));
2306
2307             // Construct result
2308             int resultSize = list.size();
2309             if (limit == 0) {
2310                 while (resultSize > 0 && list.get(resultSize - 1).isEmpty()) {
2311                     resultSize--;
2312                 }
2313             }
2314             String[] result = new String[resultSize];
2315             return list.subList(0, resultSize).toArray(result);
2316         }
2317         return Pattern.compile(regex).split(this, limit);
2318     }
2319
2320     /**
2321      * Splits this string around matches of the given <a
2322      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2323      *
2324      * <p> This method works as if by invoking the two-argument {@link
2325      * #split(String, int) split} method with the given expression and a limit
2326      * argument of zero.  Trailing empty strings are therefore not included in
2327      * the resulting array.
2328      *
2329      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2330      * results with these expressions:
2331      *
2332      * <blockquote><table class="plain">
2333      * <caption style="display:none">Split examples showing regex and result</caption>
2334      * <thead>
2335      * <tr>
2336      *  <th scope="col">Regex</th>
2337      *  <th scope="col">Result</th>
2338      * </tr>
2339      * </thead>
2340      * <tbody>
2341      * <tr><th scope="row" style="text-weight:normal">:</th>
2342      *     <td>{@code { "boo""and""foo" }}</td></tr>
2343      * <tr><th scope="row" style="text-weight:normal">o</th>
2344      *     <td>{@code { "b"""":and:f" }}</td></tr>
2345      * </tbody>
2346      * </table></blockquote>
2347      *
2348      *
2349      * @param  regex
2350      *         the delimiting regular expression
2351      *
2352      * @return  the array of strings computed by splitting this string
2353      *          around matches of the given regular expression
2354      *
2355      * @throws  PatternSyntaxException
2356      *          if the regular expression's syntax is invalid
2357      *
2358      * @see java.util.regex.Pattern
2359      *
2360      * @since 1.4
2361      * @spec JSR-51
2362      */

2363     public String[] split(String regex) {
2364         return split(regex, 0);
2365     }
2366
2367     /**
2368      * Returns a new String composed of copies of the
2369      * {@code CharSequence elements} joined together with a copy of
2370      * the specified {@code delimiter}.
2371      *
2372      * <blockquote>For example,
2373      * <pre>{@code
2374      *     String message = String.join("-""Java""is""cool");
2375      *     // message returned is: "Java-is-cool"
2376      * }</pre></blockquote>
2377      *
2378      * Note that if an element is null, then {@code "null"} is added.
2379      *
2380      * @param  delimiter the delimiter that separates each element
2381      * @param  elements the elements to join together.
2382      *
2383      * @return a new {@code String} that is composed of the {@code elements}
2384      *         separated by the {@code delimiter}
2385      *
2386      * @throws NullPointerException If {@code delimiter} or {@code elements}
2387      *         is {@code null}
2388      *
2389      * @see java.util.StringJoiner
2390      * @since 1.8
2391      */

2392     public static String join(CharSequence delimiter, CharSequence... elements) {
2393         Objects.requireNonNull(delimiter);
2394         Objects.requireNonNull(elements);
2395         // Number of elements not likely worth Arrays.stream overhead.
2396         StringJoiner joiner = new StringJoiner(delimiter);
2397         for (CharSequence cs: elements) {
2398             joiner.add(cs);
2399         }
2400         return joiner.toString();
2401     }
2402
2403     /**
2404      * Returns a new {@code String} composed of copies of the
2405      * {@code CharSequence elements} joined together with a copy of the
2406      * specified {@code delimiter}.
2407      *
2408      * <blockquote>For example,
2409      * <pre>{@code
2410      *     List<String> strings = List.of("Java""is""cool");
2411      *     String message = String.join(" ", strings);
2412      *     //message returned is: "Java is cool"
2413      *
2414      *     Set<String> strings =
2415      *         new LinkedHashSet<>(List.of("Java""is""very""cool"));
2416      *     String message = String.join("-", strings);
2417      *     //message returned is: "Java-is-very-cool"
2418      * }</pre></blockquote>
2419      *
2420      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2421      *
2422      * @param  delimiter a sequence of characters that is used to separate each
2423      *         of the {@code elements} in the resulting {@code String}
2424      * @param  elements an {@code Iterable} that will have its {@code elements}
2425      *         joined together.
2426      *
2427      * @return a new {@code String} that is composed from the {@code elements}
2428      *         argument
2429      *
2430      * @throws NullPointerException If {@code delimiter} or {@code elements}
2431      *         is {@code null}
2432      *
2433      * @see    #join(CharSequence,CharSequence...)
2434      * @see    java.util.StringJoiner
2435      * @since 1.8
2436      */

2437     public static String join(CharSequence delimiter,
2438             Iterable<? extends CharSequence> elements) {
2439         Objects.requireNonNull(delimiter);
2440         Objects.requireNonNull(elements);
2441         StringJoiner joiner = new StringJoiner(delimiter);
2442         for (CharSequence cs: elements) {
2443             joiner.add(cs);
2444         }
2445         return joiner.toString();
2446     }
2447
2448     /**
2449      * Converts all of the characters in this {@code String} to lower
2450      * case using the rules of the given {@code Locale}.  Case mapping is based
2451      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2452      * class. Since case mappings are not always 1:1 char mappings, the resulting
2453      * {@code String} may be a different length than the original {@code String}.
2454      * <p>
2455      * Examples of lowercase  mappings are in the following table:
2456      * <table class="plain">
2457      * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2458      * <thead>
2459      * <tr>
2460      *   <th scope="col">Language Code of Locale</th>
2461      *   <th scope="col">Upper Case</th>
2462      *   <th scope="col">Lower Case</th>
2463      *   <th scope="col">Description</th>
2464      * </tr>
2465      * </thead>
2466      * <tbody>
2467      * <tr>
2468      *   <td>tr (Turkish)</td>
2469      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0130</th>
2470      *   <td>&#92;u0069</td>
2471      *   <td>capital letter I with dot above -&gt; small letter i</td>
2472      * </tr>
2473      * <tr>
2474      *   <td>tr (Turkish)</td>
2475      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0049</th>
2476      *   <td>&#92;u0131</td>
2477      *   <td>capital letter I -&gt; small letter dotless i </td>
2478      * </tr>
2479      * <tr>
2480      *   <td>(all)</td>
2481      *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
2482      *   <td>french fries</td>
2483      *   <td>lowercased all chars in String</td>
2484      * </tr>
2485      * <tr>
2486      *   <td>(all)</td>
2487      *   <th scope="row" style="font-weight:normal; text-align:left">
2488      *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
2489      *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
2490      *   <td>lowercased all chars in String</td>
2491      * </tr>
2492      * </tbody>
2493      * </table>
2494      *
2495      * @param locale use the case transformation rules for this locale
2496      * @return the {@code String}, converted to lowercase.
2497      * @see     java.lang.String#toLowerCase()
2498      * @see     java.lang.String#toUpperCase()
2499      * @see     java.lang.String#toUpperCase(Locale)
2500      * @since   1.1
2501      */

2502     public String toLowerCase(Locale locale) {
2503         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2504                           : StringUTF16.toLowerCase(this, value, locale);
2505     }
2506
2507     /**
2508      * Converts all of the characters in this {@code String} to lower
2509      * case using the rules of the default locale. This is equivalent to calling
2510      * {@code toLowerCase(Locale.getDefault())}.
2511      * <p>
2512      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2513      * results if used for strings that are intended to be interpreted locale
2514      * independently.
2515      * Examples are programming language identifiers, protocol keys, and HTML
2516      * tags.
2517      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2518      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2519      * LATIN SMALL LETTER DOTLESS I character.
2520      * To obtain correct results for locale insensitive strings, use
2521      * {@code toLowerCase(Locale.ROOT)}.
2522      *
2523      * @return  the {@code String}, converted to lowercase.
2524      * @see     java.lang.String#toLowerCase(Locale)
2525      */

2526     public String toLowerCase() {
2527         return toLowerCase(Locale.getDefault());
2528     }
2529
2530     /**
2531      * Converts all of the characters in this {@code String} to upper
2532      * case using the rules of the given {@code Locale}. Case mapping is based
2533      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2534      * class. Since case mappings are not always 1:1 char mappings, the resulting
2535      * {@code String} may be a different length than the original {@code String}.
2536      * <p>
2537      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2538      *
2539      * <table class="plain">
2540      * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2541      * <thead>
2542      * <tr>
2543      *   <th scope="col">Language Code of Locale</th>
2544      *   <th scope="col">Lower Case</th>
2545      *   <th scope="col">Upper Case</th>
2546      *   <th scope="col">Description</th>
2547      * </tr>
2548      * </thead>
2549      * <tbody>
2550      * <tr>
2551      *   <td>tr (Turkish)</td>
2552      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0069</th>
2553      *   <td>&#92;u0130</td>
2554      *   <td>small letter i -&gt; capital letter I with dot above</td>
2555      * </tr>
2556      * <tr>
2557      *   <td>tr (Turkish)</td>
2558      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0131</th>
2559      *   <td>&#92;u0049</td>
2560      *   <td>small letter dotless i -&gt; capital letter I</td>
2561      * </tr>
2562      * <tr>
2563      *   <td>(all)</td>
2564      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u00df</th>
2565      *   <td>&#92;u0053 &#92;u0053</td>
2566      *   <td>small letter sharp s -&gt; two letters: SS</td>
2567      * </tr>
2568      * <tr>
2569      *   <td>(all)</td>
2570      *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
2571      *   <td>FAHRVERGN&Uuml;GEN</td>
2572      *   <td></td>
2573      * </tr>
2574      * </tbody>
2575      * </table>
2576      * @param locale use the case transformation rules for this locale
2577      * @return the {@code String}, converted to uppercase.
2578      * @see     java.lang.String#toUpperCase()
2579      * @see     java.lang.String#toLowerCase()
2580      * @see     java.lang.String#toLowerCase(Locale)
2581      * @since   1.1
2582      */

2583     public String toUpperCase(Locale locale) {
2584         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2585                           : StringUTF16.toUpperCase(this, value, locale);
2586     }
2587
2588     /**
2589      * Converts all of the characters in this {@code String} to upper
2590      * case using the rules of the default locale. This method is equivalent to
2591      * {@code toUpperCase(Locale.getDefault())}.
2592      * <p>
2593      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2594      * results if used for strings that are intended to be interpreted locale
2595      * independently.
2596      * Examples are programming language identifiers, protocol keys, and HTML
2597      * tags.
2598      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2599      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2600      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2601      * To obtain correct results for locale insensitive strings, use
2602      * {@code toUpperCase(Locale.ROOT)}.
2603      *
2604      * @return  the {@code String}, converted to uppercase.
2605      * @see     java.lang.String#toUpperCase(Locale)
2606      */

2607     public String toUpperCase() {
2608         return toUpperCase(Locale.getDefault());
2609     }
2610
2611     /**
2612      * Returns a string whose value is this string, with all leading
2613      * and trailing space removed, where space is defined
2614      * as any character whose codepoint is less than or equal to
2615      * {@code 'U+0020'} (the space character).
2616      * <p>
2617      * If this {@code String} object represents an empty character
2618      * sequence, or the first and last characters of character sequence
2619      * represented by this {@code String} object both have codes
2620      * that are not space (as defined above), then a
2621      * reference to this {@code String} object is returned.
2622      * <p>
2623      * Otherwise, if all characters in this string are space (as
2624      * defined above), then a  {@code String} object representing an
2625      * empty string is returned.
2626      * <p>
2627      * Otherwise, let <i>k</i> be the index of the first character in the
2628      * string whose code is not a space (as defined above) and let
2629      * <i>m</i> be the index of the last character in the string whose code
2630      * is not a space (as defined above). A {@code String}
2631      * object is returned, representing the substring of this string that
2632      * begins with the character at index <i>k</i> and ends with the
2633      * character at index <i>m</i>-that is, the result of
2634      * {@code this.substring(k, m + 1)}.
2635      * <p>
2636      * This method may be used to trim space (as defined above) from
2637      * the beginning and end of a string.
2638      *
2639      * @return  a string whose value is this string, with all leading
2640      *          and trailing space removed, or this string if it
2641      *          has no leading or trailing space.
2642      */

2643     public String trim() {
2644         String ret = isLatin1() ? StringLatin1.trim(value)
2645                                 : StringUTF16.trim(value);
2646         return ret == null ? this : ret;
2647     }
2648
2649     /**
2650      * Returns a string whose value is this string, with all leading
2651      * and trailing {@link Character#isWhitespace(int) white space}
2652      * removed.
2653      * <p>
2654      * If this {@code String} object represents an empty string,
2655      * or if all code points in this string are
2656      * {@link Character#isWhitespace(int) white space}, then an empty string
2657      * is returned.
2658      * <p>
2659      * Otherwise, returns a substring of this string beginning with the first
2660      * code point that is not a {@link Character#isWhitespace(int) white space}
2661      * up to and including the last code point that is not a
2662      * {@link Character#isWhitespace(int) white space}.
2663      * <p>
2664      * This method may be used to strip
2665      * {@link Character#isWhitespace(int) white space} from
2666      * the beginning and end of a string.
2667      *
2668      * @return  a string whose value is this string, with all leading
2669      *          and trailing white space removed
2670      *
2671      * @see Character#isWhitespace(int)
2672      *
2673      * @since 11
2674      */

2675     public String strip() {
2676         String ret = isLatin1() ? StringLatin1.strip(value)
2677                                 : StringUTF16.strip(value);
2678         return ret == null ? this : ret;
2679     }
2680
2681     /**
2682      * Returns a string whose value is this string, with all leading
2683      * {@link Character#isWhitespace(int) white space} removed.
2684      * <p>
2685      * If this {@code String} object represents an empty string,
2686      * or if all code points in this string are
2687      * {@link Character#isWhitespace(int) white space}, then an empty string
2688      * is returned.
2689      * <p>
2690      * Otherwise, returns a substring of this string beginning with the first
2691      * code point that is not a {@link Character#isWhitespace(int) white space}
2692      * up to to and including the last code point of this string.
2693      * <p>
2694      * This method may be used to trim
2695      * {@link Character#isWhitespace(int) white space} from
2696      * the beginning of a string.
2697      *
2698      * @return  a string whose value is this string, with all leading white
2699      *          space removed
2700      *
2701      * @see Character#isWhitespace(int)
2702      *
2703      * @since 11
2704      */

2705     public String stripLeading() {
2706         String ret = isLatin1() ? StringLatin1.stripLeading(value)
2707                                 : StringUTF16.stripLeading(value);
2708         return ret == null ? this : ret;
2709     }
2710
2711     /**
2712      * Returns a string whose value is this string, with all trailing
2713      * {@link Character#isWhitespace(int) white space} removed.
2714      * <p>
2715      * If this {@code String} object represents an empty string,
2716      * or if all characters in this string are
2717      * {@link Character#isWhitespace(int) white space}, then an empty string
2718      * is returned.
2719      * <p>
2720      * Otherwise, returns a substring of this string beginning with the first
2721      * code point of this string up to and including the last code point
2722      * that is not a {@link Character#isWhitespace(int) white space}.
2723      * <p>
2724      * This method may be used to trim
2725      * {@link Character#isWhitespace(int) white space} from
2726      * the end of a string.
2727      *
2728      * @return  a string whose value is this string, with all trailing white
2729      *          space removed
2730      *
2731      * @see Character#isWhitespace(int)
2732      *
2733      * @since 11
2734      */

2735     public String stripTrailing() {
2736         String ret = isLatin1() ? StringLatin1.stripTrailing(value)
2737                                 : StringUTF16.stripTrailing(value);
2738         return ret == null ? this : ret;
2739     }
2740
2741     /**
2742      * Returns {@code trueif the string is empty or contains only
2743      * {@link Character#isWhitespace(int) white space} codepoints,
2744      * otherwise {@code false}.
2745      *
2746      * @return {@code trueif the string is empty or contains only
2747      *         {@link Character#isWhitespace(int) white space} codepoints,
2748      *         otherwise {@code false}
2749      *
2750      * @see Character#isWhitespace(int)
2751      *
2752      * @since 11
2753      */

2754     public boolean isBlank() {
2755         return indexOfNonWhitespace() == length();
2756     }
2757
2758     private int indexOfNonWhitespace() {
2759         if (isLatin1()) {
2760             return StringLatin1.indexOfNonWhitespace(value);
2761         } else {
2762             return StringUTF16.indexOfNonWhitespace(value);
2763         }
2764     }
2765
2766     /**
2767      * Returns a stream of lines extracted from this string,
2768      * separated by line terminators.
2769      * <p>
2770      * A <i>line terminator</i> is one of the following:
2771      * a line feed character {@code "\n"} (U+000A),
2772      * a carriage return character {@code "\r"} (U+000D),
2773      * or a carriage return followed immediately by a line feed
2774      * {@code "\r\n"} (U+000D U+000A).
2775      * <p>
2776      * A <i>line</i> is either a sequence of zero or more characters
2777      * followed by a line terminator, or it is a sequence of one or
2778      * more characters followed by the end of the string. A
2779      * line does not include the line terminator.
2780      * <p>
2781      * The stream returned by this method contains the lines from
2782      * this string in the order in which they occur.
2783      *
2784      * @apiNote This definition of <i>line</i> implies that an empty
2785      *          string has zero lines and that there is no empty line
2786      *          following a line terminator at the end of a string.
2787      *
2788      * @implNote This method provides better performance than
2789      *           split("\R") by supplying elements lazily and
2790      *           by faster search of new line terminators.
2791      *
2792      * @return  the stream of lines extracted from this string
2793      *
2794      * @since 11
2795      */

2796     public Stream<String> lines() {
2797         return isLatin1() ? StringLatin1.lines(value)
2798                           : StringUTF16.lines(value);
2799     }
2800
2801     /**
2802      * This object (which is already a string!) is itself returned.
2803      *
2804      * @return  the string itself.
2805      */

2806     public String toString() {
2807         return this;
2808     }
2809
2810     /**
2811      * Returns a stream of {@code int} zero-extending the {@code char} values
2812      * from this sequence.  Any char which maps to a <a
2813      * href="{@docRoot}/java.base/java/lang/Character.html#unicode">surrogate code
2814      * point</a> is passed through uninterpreted.
2815      *
2816      * @return an IntStream of char values from this sequence
2817      * @since 9
2818      */

2819     @Override
2820     public IntStream chars() {
2821         return StreamSupport.intStream(
2822             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2823                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2824             false);
2825     }
2826
2827
2828     /**
2829      * Returns a stream of code point values from this sequence.  Any surrogate
2830      * pairs encountered in the sequence are combined as if by {@linkplain
2831      * Character#toCodePoint Character.toCodePoint} and the result is passed
2832      * to the stream. Any other code units, including ordinary BMP characters,
2833      * unpaired surrogates, and undefined code units, are zero-extended to
2834      * {@code int} values which are then passed to the stream.
2835      *
2836      * @return an IntStream of Unicode code points from this sequence
2837      * @since 9
2838      */

2839     @Override
2840     public IntStream codePoints() {
2841         return StreamSupport.intStream(
2842             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2843                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2844             false);
2845     }
2846
2847     /**
2848      * Converts this string to a new character array.
2849      *
2850      * @return  a newly allocated character array whose length is the length
2851      *          of this string and whose contents are initialized to contain
2852      *          the character sequence represented by this string.
2853      */

2854     public char[] toCharArray() {
2855         return isLatin1() ? StringLatin1.toChars(value)
2856                           : StringUTF16.toChars(value);
2857     }
2858
2859     /**
2860      * Returns a formatted string using the specified format string and
2861      * arguments.
2862      *
2863      * <p> The locale always used is the one returned by {@link
2864      * java.util.Locale#getDefault(java.util.Locale.Category)
2865      * Locale.getDefault(Locale.Category)} with
2866      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2867      *
2868      * @param  format
2869      *         A <a href="../util/Formatter.html#syntax">format string</a>
2870      *
2871      * @param  args
2872      *         Arguments referenced by the format specifiers in the format
2873      *         string.  If there are more arguments than format specifiers, the
2874      *         extra arguments are ignored.  The number of arguments is
2875      *         variable and may be zero.  The maximum number of arguments is
2876      *         limited by the maximum dimension of a Java array as defined by
2877      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2878      *         The behaviour on a
2879      *         {@code null} argument depends on the <a
2880      *         href="../util/Formatter.html#syntax">conversion</a>.
2881      *
2882      * @throws  java.util.IllegalFormatException
2883      *          If a format string contains an illegal syntax, a format
2884      *          specifier that is incompatible with the given arguments,
2885      *          insufficient arguments given the format string, or other
2886      *          illegal conditions.  For specification of all possible
2887      *          formatting errors, see the <a
2888      *          href="../util/Formatter.html#detail">Details</a> section of the
2889      *          formatter class specification.
2890      *
2891      * @return  A formatted string
2892      *
2893      * @see  java.util.Formatter
2894      * @since  1.5
2895      */

2896     public static String format(String format, Object... args) {
2897         return new Formatter().format(format, args).toString();
2898     }
2899
2900     /**
2901      * Returns a formatted string using the specified locale, format string,
2902      * and arguments.
2903      *
2904      * @param  l
2905      *         The {@linkplain java.util.Locale locale} to apply during
2906      *         formatting.  If {@code l} is {@code null} then no localization
2907      *         is applied.
2908      *
2909      * @param  format
2910      *         A <a href="../util/Formatter.html#syntax">format string</a>
2911      *
2912      * @param  args
2913      *         Arguments referenced by the format specifiers in the format
2914      *         string.  If there are more arguments than format specifiers, the
2915      *         extra arguments are ignored.  The number of arguments is
2916      *         variable and may be zero.  The maximum number of arguments is
2917      *         limited by the maximum dimension of a Java array as defined by
2918      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2919      *         The behaviour on a
2920      *         {@code null} argument depends on the
2921      *         <a href="../util/Formatter.html#syntax">conversion</a>.
2922      *
2923      * @throws  java.util.IllegalFormatException
2924      *          If a format string contains an illegal syntax, a format
2925      *          specifier that is incompatible with the given arguments,
2926      *          insufficient arguments given the format string, or other
2927      *          illegal conditions.  For specification of all possible
2928      *          formatting errors, see the <a
2929      *          href="../util/Formatter.html#detail">Details</a> section of the
2930      *          formatter class specification
2931      *
2932      * @return  A formatted string
2933      *
2934      * @see  java.util.Formatter
2935      * @since  1.5
2936      */

2937     public static String format(Locale l, String format, Object... args) {
2938         return new Formatter(l).format(format, args).toString();
2939     }
2940
2941     /**
2942      * Returns the string representation of the {@code Object} argument.
2943      *
2944      * @param   obj   an {@code Object}.
2945      * @return  if the argument is {@code null}, then a string equal to
2946      *          {@code "null"}; otherwise, the value of
2947      *          {@code obj.toString()} is returned.
2948      * @see     java.lang.Object#toString()
2949      */

2950     public static String valueOf(Object obj) {
2951         return (obj == null) ? "null" : obj.toString();
2952     }
2953
2954     /**
2955      * Returns the string representation of the {@code char} array
2956      * argument. The contents of the character array are copied; subsequent
2957      * modification of the character array does not affect the returned
2958      * string.
2959      *
2960      * @param   data     the character array.
2961      * @return  a {@code String} that contains the characters of the
2962      *          character array.
2963      */

2964     public static String valueOf(char data[]) {
2965         return new String(data);
2966     }
2967
2968     /**
2969      * Returns the string representation of a specific subarray of the
2970      * {@code char} array argument.
2971      * <p>
2972      * The {@code offset} argument is the index of the first
2973      * character of the subarray. The {@code count} argument
2974      * specifies the length of the subarray. The contents of the subarray
2975      * are copied; subsequent modification of the character array does not
2976      * affect the returned string.
2977      *
2978      * @param   data     the character array.
2979      * @param   offset   initial offset of the subarray.
2980      * @param   count    length of the subarray.
2981      * @return  a {@code String} that contains the characters of the
2982      *          specified subarray of the character array.
2983      * @exception IndexOutOfBoundsException if {@code offset} is
2984      *          negative, or {@code count} is negative, or
2985      *          {@code offset+count} is larger than
2986      *          {@code data.length}.
2987      */

2988     public static String valueOf(char data[], int offset, int count) {
2989         return new String(data, offset, count);
2990     }
2991
2992     /**
2993      * Equivalent to {@link #valueOf(char[], intint)}.
2994      *
2995      * @param   data     the character array.
2996      * @param   offset   initial offset of the subarray.
2997      * @param   count    length of the subarray.
2998      * @return  a {@code String} that contains the characters of the
2999      *          specified subarray of the character array.
3000      * @exception IndexOutOfBoundsException if {@code offset} is
3001      *          negative, or {@code count} is negative, or
3002      *          {@code offset+count} is larger than
3003      *          {@code data.length}.
3004      */

3005     public static String copyValueOf(char data[], int offset, int count) {
3006         return new String(data, offset, count);
3007     }
3008
3009     /**
3010      * Equivalent to {@link #valueOf(char[])}.
3011      *
3012      * @param   data   the character array.
3013      * @return  a {@code String} that contains the characters of the
3014      *          character array.
3015      */

3016     public static String copyValueOf(char data[]) {
3017         return new String(data);
3018     }
3019
3020     /**
3021      * Returns the string representation of the {@code boolean} argument.
3022      *
3023      * @param   b   a {@code boolean}.
3024      * @return  if the argument is {@code true}, a string equal to
3025      *          {@code "true"} is returned; otherwise, a string equal to
3026      *          {@code "false"} is returned.
3027      */

3028     public static String valueOf(boolean b) {
3029         return b ? "true" : "false";
3030     }
3031
3032     /**
3033      * Returns the string representation of the {@code char}
3034      * argument.
3035      *
3036      * @param   c   a {@code char}.
3037      * @return  a string of length {@code 1} containing
3038      *          as its single character the argument {@code c}.
3039      */

3040     public static String valueOf(char c) {
3041         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
3042             return new String(StringLatin1.toBytes(c), LATIN1);
3043         }
3044         return new String(StringUTF16.toBytes(c), UTF16);
3045     }
3046
3047     /**
3048      * Returns the string representation of the {@code int} argument.
3049      * <p>
3050      * The representation is exactly the one returned by the
3051      * {@code Integer.toString} method of one argument.
3052      *
3053      * @param   i   an {@code int}.
3054      * @return  a string representation of the {@code int} argument.
3055      * @see     java.lang.Integer#toString(intint)
3056      */

3057     public static String valueOf(int i) {
3058         return Integer.toString(i);
3059     }
3060
3061     /**
3062      * Returns the string representation of the {@code long} argument.
3063      * <p>
3064      * The representation is exactly the one returned by the
3065      * {@code Long.toString} method of one argument.
3066      *
3067      * @param   l   a {@code long}.
3068      * @return  a string representation of the {@code long} argument.
3069      * @see     java.lang.Long#toString(long)
3070      */

3071     public static String valueOf(long l) {
3072         return Long.toString(l);
3073     }
3074
3075     /**
3076      * Returns the string representation of the {@code float} argument.
3077      * <p>
3078      * The representation is exactly the one returned by the
3079      * {@code Float.toString} method of one argument.
3080      *
3081      * @param   f   a {@code float}.
3082      * @return  a string representation of the {@code float} argument.
3083      * @see     java.lang.Float#toString(float)
3084      */

3085     public static String valueOf(float f) {
3086         return Float.toString(f);
3087     }
3088
3089     /**
3090      * Returns the string representation of the {@code double} argument.
3091      * <p>
3092      * The representation is exactly the one returned by the
3093      * {@code Double.toString} method of one argument.
3094      *
3095      * @param   d   a {@code double}.
3096      * @return  a  string representation of the {@code double} argument.
3097      * @see     java.lang.Double#toString(double)
3098      */

3099     public static String valueOf(double d) {
3100         return Double.toString(d);
3101     }
3102
3103     /**
3104      * Returns a canonical representation for the string object.
3105      * <p>
3106      * A pool of strings, initially empty, is maintained privately by the
3107      * class {@code String}.
3108      * <p>
3109      * When the intern method is invoked, if the pool already contains a
3110      * string equal to this {@code String} object as determined by
3111      * the {@link #equals(Object)} method, then the string from the pool is
3112      * returned. Otherwise, this {@code String} object is added to the
3113      * pool and a reference to this {@code String} object is returned.
3114      * <p>
3115      * It follows that for any two strings {@code s} and {@code t},
3116      * {@code s.intern() == t.intern()} is {@code true}
3117      * if and only if {@code s.equals(t)} is {@code true}.
3118      * <p>
3119      * All literal strings and string-valued constant expressions are
3120      * interned. String literals are defined in section 3.10.5 of the
3121      * <cite>The Java&trade; Language Specification</cite>.
3122      *
3123      * @return  a string that has the same contents as this string, but is
3124      *          guaranteed to be from a pool of unique strings.
3125      * @jls 3.10.5 String Literals
3126      */

3127     public native String intern();
3128
3129     /**
3130      * Returns a string whose value is the concatenation of this
3131      * string repeated {@code count} times.
3132      * <p>
3133      * If this string is empty or count is zero then the empty
3134      * string is returned.
3135      *
3136      * @param   count number of times to repeat
3137      *
3138      * @return  A string composed of this string repeated
3139      *          {@code count} times or the empty string if this
3140      *          string is empty or count is zero
3141      *
3142      * @throws  IllegalArgumentException if the {@code count} is
3143      *          negative.
3144      *
3145      * @since 11
3146      */

3147     public String repeat(int count) {
3148         if (count < 0) {
3149             throw new IllegalArgumentException("count is negative: " + count);
3150         }
3151         if (count == 1) {
3152             return this;
3153         }
3154         final int len = value.length;
3155         if (len == 0 || count == 0) {
3156             return "";
3157         }
3158         if (len == 1) {
3159             final byte[] single = new byte[count];
3160             Arrays.fill(single, value[0]);
3161             return new String(single, coder);
3162         }
3163         if (Integer.MAX_VALUE / count < len) {
3164             throw new OutOfMemoryError("Repeating " + len + " bytes String " + count +
3165                     " times will produce a String exceeding maximum size.");
3166         }
3167         final int limit = len * count;
3168         final byte[] multiple = new byte[limit];
3169         System.arraycopy(value, 0, multiple, 0, len);
3170         int copied = len;
3171         for (; copied < limit - copied; copied <<= 1) {
3172             System.arraycopy(multiple, 0, multiple, copied, copied);
3173         }
3174         System.arraycopy(multiple, 0, multiple, copied, limit - copied);
3175         return new String(multiple, coder);
3176     }
3177
3178     ////////////////////////////////////////////////////////////////
3179
3180     /**
3181      * Copy character bytes from this string into dst starting at dstBegin.
3182      * This method doesn't perform any range checking.
3183      *
3184      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
3185      * coders are different, and dst is big enough (range check)
3186      *
3187      * @param dstBegin  the char index, not offset of byte[]
3188      * @param coder     the coder of dst[]
3189      */

3190     void getBytes(byte dst[], int dstBegin, byte coder) {
3191         if (coder() == coder) {
3192             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
3193         } else {    // this.coder == LATIN && coder == UTF16
3194             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
3195         }
3196     }
3197
3198     /*
3199      * Package private constructor. Trailing Void argument is there for
3200      * disambiguating it against other (public) constructors.
3201      *
3202      * Stores the char[] value into a byte[] that each byte represents
3203      * the8 low-order bits of the corresponding character, if the char[]
3204      * contains only latin1 character. Or a byte[] that stores all
3205      * characters in their byte sequences defined by the {@code StringUTF16}.
3206      */

3207     String(char[] value, int off, int len, Void sig) {
3208         if (len == 0) {
3209             this.value = "".value;
3210             this.coder = "".coder;
3211             return;
3212         }
3213         if (COMPACT_STRINGS) {
3214             byte[] val = StringUTF16.compress(value, off, len);
3215             if (val != null) {
3216                 this.value = val;
3217                 this.coder = LATIN1;
3218                 return;
3219             }
3220         }
3221         this.coder = UTF16;
3222         this.value = StringUTF16.toBytes(value, off, len);
3223     }
3224
3225     /*
3226      * Package private constructor. Trailing Void argument is there for
3227      * disambiguating it against other (public) constructors.
3228      */

3229     String(AbstractStringBuilder asb, Void sig) {
3230         byte[] val = asb.getValue();
3231         int length = asb.length();
3232         if (asb.isLatin1()) {
3233             this.coder = LATIN1;
3234             this.value = Arrays.copyOfRange(val, 0, length);
3235         } else {
3236             if (COMPACT_STRINGS) {
3237                 byte[] buf = StringUTF16.compress(val, 0, length);
3238                 if (buf != null) {
3239                     this.coder = LATIN1;
3240                     this.value = buf;
3241                     return;
3242                 }
3243             }
3244             this.coder = UTF16;
3245             this.value = Arrays.copyOfRange(val, 0, length << 1);
3246         }
3247     }
3248
3249    /*
3250     * Package private constructor which shares value array for speed.
3251     */

3252     String(byte[] value, byte coder) {
3253         this.value = value;
3254         this.coder = coder;
3255     }
3256
3257     byte coder() {
3258         return COMPACT_STRINGS ? coder : UTF16;
3259     }
3260
3261     byte[] value() {
3262         return value;
3263     }
3264
3265     private boolean isLatin1() {
3266         return COMPACT_STRINGS && coder == LATIN1;
3267     }
3268
3269     @Native static final byte LATIN1 = 0;
3270     @Native static final byte UTF16  = 1;
3271
3272     /*
3273      * StringIndexOutOfBoundsException  if {@code index} is
3274      * negative or greater than or equal to {@code length}.
3275      */

3276     static void checkIndex(int index, int length) {
3277         if (index < 0 || index >= length) {
3278             throw new StringIndexOutOfBoundsException("index " + index +
3279                                                       ",length " + length);
3280         }
3281     }
3282
3283     /*
3284      * StringIndexOutOfBoundsException  if {@code offset}
3285      * is negative or greater than {@code length}.
3286      */

3287     static void checkOffset(int offset, int length) {
3288         if (offset < 0 || offset > length) {
3289             throw new StringIndexOutOfBoundsException("offset " + offset +
3290                                                       ",length " + length);
3291         }
3292     }
3293
3294     /*
3295      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3296      * bounds.
3297      *
3298      * @throws  StringIndexOutOfBoundsException
3299      *          If {@code offset} is negative, {@code count} is negative,
3300      *          or {@code offset} is greater than {@code length - count}
3301      */

3302     static void checkBoundsOffCount(int offset, int count, int length) {
3303         if (offset < 0 || count < 0 || offset > length - count) {
3304             throw new StringIndexOutOfBoundsException(
3305                 "offset " + offset + ", count " + count + ", length " + length);
3306         }
3307     }
3308
3309     /*
3310      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3311      * bounds.
3312      *
3313      * @throws  StringIndexOutOfBoundsException
3314      *          If {@code begin} is negative, {@code begin} is greater than
3315      *          {@code end}, or {@code end} is greater than {@code length}.
3316      */

3317     static void checkBoundsBeginEnd(int begin, int end, int length) {
3318         if (begin < 0 || begin > end || end > length) {
3319             throw new StringIndexOutOfBoundsException(
3320                 "begin " + begin + ", end " + end + ", length " + length);
3321         }
3322     }
3323
3324     /**
3325      * Returns the string representation of the {@code codePoint}
3326      * argument.
3327      *
3328      * @param   codePoint a {@code codePoint}.
3329      * @return  a string of length {@code 1} or {@code 2} containing
3330      *          as its single character the argument {@code codePoint}.
3331      * @throws IllegalArgumentException if the specified
3332      *          {@code codePoint} is not a {@linkplain Character#isValidCodePoint
3333      *          valid Unicode code point}.
3334      */

3335     static String valueOfCodePoint(int codePoint) {
3336         if (COMPACT_STRINGS && StringLatin1.canEncode(codePoint)) {
3337             return new String(StringLatin1.toBytes((char)codePoint), LATIN1);
3338         } else if (Character.isBmpCodePoint(codePoint)) {
3339             return new String(StringUTF16.toBytes((char)codePoint), UTF16);
3340         } else if (Character.isSupplementaryCodePoint(codePoint)) {
3341             return new String(StringUTF16.toBytesSupplementary(codePoint), UTF16);
3342         }
3343
3344         throw new IllegalArgumentException(
3345             format("Not a valid Unicode code point: 0x%X", codePoint));
3346     }
3347 }
3348