1 /*
2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.io.BufferedWriter;
29 import java.io.Closeable;
30 import java.io.IOException;
31 import java.io.File;
32 import java.io.FileOutputStream;
33 import java.io.FileNotFoundException;
34 import java.io.Flushable;
35 import java.io.OutputStream;
36 import java.io.OutputStreamWriter;
37 import java.io.PrintStream;
38 import java.io.UnsupportedEncodingException;
39 import java.math.BigDecimal;
40 import java.math.BigInteger;
41 import java.math.MathContext;
42 import java.math.RoundingMode;
43 import java.nio.charset.Charset;
44 import java.nio.charset.IllegalCharsetNameException;
45 import java.nio.charset.UnsupportedCharsetException;
46 import java.text.DateFormatSymbols;
47 import java.text.DecimalFormat;
48 import java.text.DecimalFormatSymbols;
49 import java.text.NumberFormat;
50 import java.text.spi.NumberFormatProvider;
51 import java.util.regex.Matcher;
52 import java.util.regex.Pattern;
53 import java.util.Objects;
54
55 import java.time.DateTimeException;
56 import java.time.Instant;
57 import java.time.ZoneId;
58 import java.time.ZoneOffset;
59 import java.time.temporal.ChronoField;
60 import java.time.temporal.TemporalAccessor;
61 import java.time.temporal.TemporalQueries;
62 import java.time.temporal.UnsupportedTemporalTypeException;
63
64 import jdk.internal.math.DoubleConsts;
65 import jdk.internal.math.FormattedFloatingDecimal;
66 import sun.util.locale.provider.LocaleProviderAdapter;
67 import sun.util.locale.provider.ResourceBundleBasedAdapter;
68
69 /**
70 * An interpreter for printf-style format strings. This class provides support
71 * for layout justification and alignment, common formats for numeric, string,
72 * and date/time data, and locale-specific output. Common Java types such as
73 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
74 * are supported. Limited formatting customization for arbitrary user types is
75 * provided through the {@link Formattable} interface.
76 *
77 * <p> Formatters are not necessarily safe for multithreaded access. Thread
78 * safety is optional and is the responsibility of users of methods in this
79 * class.
80 *
81 * <p> Formatted printing for the Java language is heavily inspired by C's
82 * {@code printf}. Although the format strings are similar to C, some
83 * customizations have been made to accommodate the Java language and exploit
84 * some of its features. Also, Java formatting is more strict than C's; for
85 * example, if a conversion is incompatible with a flag, an exception will be
86 * thrown. In C inapplicable flags are silently ignored. The format strings
87 * are thus intended to be recognizable to C programmers but not necessarily
88 * completely compatible with those in C.
89 *
90 * <p> Examples of expected usage:
91 *
92 * <blockquote><pre>
93 * StringBuilder sb = new StringBuilder();
94 * // Send all output to the Appendable object sb
95 * Formatter formatter = new Formatter(sb, Locale.US);
96 *
97 * // Explicit argument indices may be used to re-order output.
98 * formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
99 * // -> " d c b a"
100 *
101 * // Optional locale as the first argument can be used to get
102 * // locale-specific formatting of numbers. The precision and width can be
103 * // given to round and align the value.
104 * formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
105 * // -> "e = +2,7183"
106 *
107 * // The '(' numeric flag may be used to format negative numbers with
108 * // parentheses rather than a minus sign. Group separators are
109 * // automatically inserted.
110 * formatter.format("Amount gained or lost since last statement: $ %(,.2f",
111 * balanceDelta);
112 * // -> "Amount gained or lost since last statement: $ (6,217.58)"
113 * </pre></blockquote>
114 *
115 * <p> Convenience methods for common formatting requests exist as illustrated
116 * by the following invocations:
117 *
118 * <blockquote><pre>
119 * // Writes a formatted string to System.out.
120 * System.out.format("Local time: %tT", Calendar.getInstance());
121 * // -> "Local time: 13:34:18"
122 *
123 * // Writes formatted output to System.err.
124 * System.err.printf("Unable to open file '%1$s': %2$s",
125 * fileName, exception.getMessage());
126 * // -> "Unable to open file 'food': No such file or directory"
127 * </pre></blockquote>
128 *
129 * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
130 * method {@link String#format(String,Object...) String.format}:
131 *
132 * <blockquote><pre>
133 * // Format a string containing a date.
134 * import java.util.Calendar;
135 * import java.util.GregorianCalendar;
136 * import static java.util.Calendar.*;
137 *
138 * Calendar c = new GregorianCalendar(1995, MAY, 23);
139 * String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
140 * // -> s == "Duke's Birthday: May 23, 1995"
141 * </pre></blockquote>
142 *
143 * <h3><a id="org">Organization</a></h3>
144 *
145 * <p> This specification is divided into two sections. The first section, <a
146 * href="#summary">Summary</a>, covers the basic formatting concepts. This
147 * section is intended for users who want to get started quickly and are
148 * familiar with formatted printing in other programming languages. The second
149 * section, <a href="#detail">Details</a>, covers the specific implementation
150 * details. It is intended for users who want more precise specification of
151 * formatting behavior.
152 *
153 * <h3><a id="summary">Summary</a></h3>
154 *
155 * <p> This section is intended to provide a brief overview of formatting
156 * concepts. For precise behavioral details, refer to the <a
157 * href="#detail">Details</a> section.
158 *
159 * <h4><a id="syntax">Format String Syntax</a></h4>
160 *
161 * <p> Every method which produces formatted output requires a <i>format
162 * string</i> and an <i>argument list</i>. The format string is a {@link
163 * String} which may contain fixed text and one or more embedded <i>format
164 * specifiers</i>. Consider the following example:
165 *
166 * <blockquote><pre>
167 * Calendar c = ...;
168 * String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
169 * </pre></blockquote>
170 *
171 * This format string is the first argument to the {@code format} method. It
172 * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
173 * "{@code %1$tY}" which indicate how the arguments should be processed and
174 * where they should be inserted in the text. The remaining portions of the
175 * format string are fixed text including {@code "Dukes Birthday: "} and any
176 * other spaces or punctuation.
177 *
178 * The argument list consists of all arguments passed to the method after the
179 * format string. In the above example, the argument list is of size one and
180 * consists of the {@link java.util.Calendar Calendar} object {@code c}.
181 *
182 * <ul>
183 *
184 * <li> The format specifiers for general, character, and numeric types have
185 * the following syntax:
186 *
187 * <blockquote><pre>
188 * %[argument_index$][flags][width][.precision]conversion
189 * </pre></blockquote>
190 *
191 * <p> The optional <i>argument_index</i> is a decimal integer indicating the
192 * position of the argument in the argument list. The first argument is
193 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
194 *
195 * <p> The optional <i>flags</i> is a set of characters that modify the output
196 * format. The set of valid flags depends on the conversion.
197 *
198 * <p> The optional <i>width</i> is a positive decimal integer indicating
199 * the minimum number of characters to be written to the output.
200 *
201 * <p> The optional <i>precision</i> is a non-negative decimal integer usually
202 * used to restrict the number of characters. The specific behavior depends on
203 * the conversion.
204 *
205 * <p> The required <i>conversion</i> is a character indicating how the
206 * argument should be formatted. The set of valid conversions for a given
207 * argument depends on the argument's data type.
208 *
209 * <li> The format specifiers for types which are used to represents dates and
210 * times have the following syntax:
211 *
212 * <blockquote><pre>
213 * %[argument_index$][flags][width]conversion
214 * </pre></blockquote>
215 *
216 * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
217 * defined as above.
218 *
219 * <p> The required <i>conversion</i> is a two character sequence. The first
220 * character is {@code 't'} or {@code 'T'}. The second character indicates
221 * the format to be used. These characters are similar to but not completely
222 * identical to those defined by GNU {@code date} and POSIX
223 * {@code strftime(3c)}.
224 *
225 * <li> The format specifiers which do not correspond to arguments have the
226 * following syntax:
227 *
228 * <blockquote><pre>
229 * %[flags][width]conversion
230 * </pre></blockquote>
231 *
232 * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
233 *
234 * <p> The required <i>conversion</i> is a character indicating content to be
235 * inserted in the output.
236 *
237 * </ul>
238 *
239 * <h4> Conversions </h4>
240 *
241 * <p> Conversions are divided into the following categories:
242 *
243 * <ol>
244 *
245 * <li> <b>General</b> - may be applied to any argument
246 * type
247 *
248 * <li> <b>Character</b> - may be applied to basic types which represent
249 * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
250 * Byte}, {@code short}, and {@link Short}. This conversion may also be
251 * applied to the types {@code int} and {@link Integer} when {@link
252 * Character#isValidCodePoint} returns {@code true}
253 *
254 * <li> <b>Numeric</b>
255 *
256 * <ol>
257 *
258 * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
259 * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
260 * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
261 * BigInteger} (but not {@code char} or {@link Character})
262 *
263 * <li><b>Floating Point</b> - may be applied to Java floating-point types:
264 * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
265 * java.math.BigDecimal BigDecimal}
266 *
267 * </ol>
268 *
269 * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
270 * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
271 * {@link Date} and {@link TemporalAccessor TemporalAccessor}
272 *
273 * <li> <b>Percent</b> - produces a literal {@code '%'}
274 * (<code>'\u0025'</code>)
275 *
276 * <li> <b>Line Separator</b> - produces the platform-specific line separator
277 *
278 * </ol>
279 *
280 * <p> For category <i>General</i>, <i>Character</i>, <i>Numberic</i>,
281 * <i>Integral</i> and <i>Date/Time</i> conversion, unless otherwise specified,
282 * if the argument <i>arg</i> is {@code null}, then the result is "{@code null}".
283 *
284 * <p> The following table summarizes the supported conversions. Conversions
285 * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
286 * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
287 * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
288 * lower-case conversion characters except that the result is converted to
289 * upper case according to the rules of the prevailing {@link java.util.Locale
290 * Locale}. If there is no explicit locale specified, either at the
291 * construction of the instance or as a parameter to its method
292 * invocation, then the {@link java.util.Locale.Category#FORMAT default locale}
293 * is used.
294 *
295 *
296 * <table class="striped">
297 * <caption style="display:none">genConv</caption>
298 * <thead>
299 * <tr><th scope="col" style="vertical-align:bottom"> Conversion
300 * <th scope="col" style="vertical-align:bottom"> Argument Category
301 * <th scope="col" style="vertical-align:bottom"> Description
302 * </thead>
303 * <tbody>
304 * <tr><th scope="row" style="vertical-align:top"> {@code 'b'}, {@code 'B'}
305 * <td style="vertical-align:top"> general
306 * <td> If the argument <i>arg</i> is {@code null}, then the result is
307 * "{@code false}". If <i>arg</i> is a {@code boolean} or {@link
308 * Boolean}, then the result is the string returned by {@link
309 * String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is
310 * "true".
311 *
312 * <tr><th scope="row" style="vertical-align:top"> {@code 'h'}, {@code 'H'}
313 * <td style="vertical-align:top"> general
314 * <td> The result is obtained by invoking
315 * {@code Integer.toHexString(arg.hashCode())}.
316 *
317 * <tr><th scope="row" style="vertical-align:top"> {@code 's'}, {@code 'S'}
318 * <td style="vertical-align:top"> general
319 * <td> If <i>arg</i> implements {@link Formattable}, then
320 * {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
321 * result is obtained by invoking {@code arg.toString()}.
322 *
323 * <tr><th scope="row" style="vertical-align:top">{@code 'c'}, {@code 'C'}
324 * <td style="vertical-align:top"> character
325 * <td> The result is a Unicode character
326 *
327 * <tr><th scope="row" style="vertical-align:top">{@code 'd'}
328 * <td style="vertical-align:top"> integral
329 * <td> The result is formatted as a decimal integer
330 *
331 * <tr><th scope="row" style="vertical-align:top">{@code 'o'}
332 * <td style="vertical-align:top"> integral
333 * <td> The result is formatted as an octal integer
334 *
335 * <tr><th scope="row" style="vertical-align:top">{@code 'x'}, {@code 'X'}
336 * <td style="vertical-align:top"> integral
337 * <td> The result is formatted as a hexadecimal integer
338 *
339 * <tr><th scope="row" style="vertical-align:top">{@code 'e'}, {@code 'E'}
340 * <td style="vertical-align:top"> floating point
341 * <td> The result is formatted as a decimal number in computerized
342 * scientific notation
343 *
344 * <tr><th scope="row" style="vertical-align:top">{@code 'f'}
345 * <td style="vertical-align:top"> floating point
346 * <td> The result is formatted as a decimal number
347 *
348 * <tr><th scope="row" style="vertical-align:top">{@code 'g'}, {@code 'G'}
349 * <td style="vertical-align:top"> floating point
350 * <td> The result is formatted using computerized scientific notation or
351 * decimal format, depending on the precision and the value after rounding.
352 *
353 * <tr><th scope="row" style="vertical-align:top">{@code 'a'}, {@code 'A'}
354 * <td style="vertical-align:top"> floating point
355 * <td> The result is formatted as a hexadecimal floating-point number with
356 * a significand and an exponent. This conversion is <b>not</b> supported
357 * for the {@code BigDecimal} type despite the latter's being in the
358 * <i>floating point</i> argument category.
359 *
360 * <tr><th scope="row" style="vertical-align:top">{@code 't'}, {@code 'T'}
361 * <td style="vertical-align:top"> date/time
362 * <td> Prefix for date and time conversion characters. See <a
363 * href="#dt">Date/Time Conversions</a>.
364 *
365 * <tr><th scope="row" style="vertical-align:top">{@code '%'}
366 * <td style="vertical-align:top"> percent
367 * <td> The result is a literal {@code '%'} (<code>'\u0025'</code>)
368 *
369 * <tr><th scope="row" style="vertical-align:top">{@code 'n'}
370 * <td style="vertical-align:top"> line separator
371 * <td> The result is the platform-specific line separator
372 *
373 * </tbody>
374 * </table>
375 *
376 * <p> Any characters not explicitly defined as conversions are illegal and are
377 * reserved for future extensions.
378 *
379 * <h4><a id="dt">Date/Time Conversions</a></h4>
380 *
381 * <p> The following date and time conversion suffix characters are defined for
382 * the {@code 't'} and {@code 'T'} conversions. The types are similar to but
383 * not completely identical to those defined by GNU {@code date} and POSIX
384 * {@code strftime(3c)}. Additional conversion types are provided to access
385 * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
386 * second).
387 *
388 * <p> The following conversion characters are used for formatting times:
389 *
390 * <table class="striped">
391 * <caption style="display:none">time</caption>
392 * <tbody>
393 * <tr><th scope="row" style="vertical-align:top"> {@code 'H'}
394 * <td> Hour of the day for the 24-hour clock, formatted as two digits with
395 * a leading zero as necessary i.e. {@code 00 - 23}.
396 *
397 * <tr><th scope="row" style="vertical-align:top">{@code 'I'}
398 * <td> Hour for the 12-hour clock, formatted as two digits with a leading
399 * zero as necessary, i.e. {@code 01 - 12}.
400 *
401 * <tr><th scope="row" style="vertical-align:top">{@code 'k'}
402 * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
403 *
404 * <tr><th scope="row" style="vertical-align:top">{@code 'l'}
405 * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
406 *
407 * <tr><th scope="row" style="vertical-align:top">{@code 'M'}
408 * <td> Minute within the hour formatted as two digits with a leading zero
409 * as necessary, i.e. {@code 00 - 59}.
410 *
411 * <tr><th scope="row" style="vertical-align:top">{@code 'S'}
412 * <td> Seconds within the minute, formatted as two digits with a leading
413 * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
414 * value required to support leap seconds).
415 *
416 * <tr><th scope="row" style="vertical-align:top">{@code 'L'}
417 * <td> Millisecond within the second formatted as three digits with
418 * leading zeros as necessary, i.e. {@code 000 - 999}.
419 *
420 * <tr><th scope="row" style="vertical-align:top">{@code 'N'}
421 * <td> Nanosecond within the second, formatted as nine digits with leading
422 * zeros as necessary, i.e. {@code 000000000 - 999999999}.
423 *
424 * <tr><th scope="row" style="vertical-align:top">{@code 'p'}
425 * <td> Locale-specific {@linkplain
426 * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
427 * in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
428 * prefix {@code 'T'} forces this output to upper case.
429 *
430 * <tr><th scope="row" style="vertical-align:top">{@code 'z'}
431 * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC 822</a>
432 * style numeric time zone offset from GMT, e.g. {@code -0800}. This
433 * value will be adjusted as necessary for Daylight Saving Time. For
434 * {@code long}, {@link Long}, and {@link Date} the time zone used is
435 * the {@linkplain TimeZone#getDefault() default time zone} for this
436 * instance of the Java virtual machine.
437 *
438 * <tr><th scope="row" style="vertical-align:top">{@code 'Z'}
439 * <td> A string representing the abbreviation for the time zone. This
440 * value will be adjusted as necessary for Daylight Saving Time. For
441 * {@code long}, {@link Long}, and {@link Date} the time zone used is
442 * the {@linkplain TimeZone#getDefault() default time zone} for this
443 * instance of the Java virtual machine. The Formatter's locale will
444 * supersede the locale of the argument (if any).
445 *
446 * <tr><th scope="row" style="vertical-align:top">{@code 's'}
447 * <td> Seconds since the beginning of the epoch starting at 1 January 1970
448 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
449 * {@code Long.MAX_VALUE/1000}.
450 *
451 * <tr><th scope="row" style="vertical-align:top">{@code 'Q'}
452 * <td> Milliseconds since the beginning of the epoch starting at 1 January
453 * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
454 * {@code Long.MAX_VALUE}.
455 *
456 * </tbody>
457 * </table>
458 *
459 * <p> The following conversion characters are used for formatting dates:
460 *
461 * <table class="striped">
462 * <caption style="display:none">date</caption>
463 * <tbody>
464 *
465 * <tr><th scope="row" style="vertical-align:top">{@code 'B'}
466 * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
467 * full month name}, e.g. {@code "January"}, {@code "February"}.
468 *
469 * <tr><th scope="row" style="vertical-align:top">{@code 'b'}
470 * <td> Locale-specific {@linkplain
471 * java.text.DateFormatSymbols#getShortMonths abbreviated month name},
472 * e.g. {@code "Jan"}, {@code "Feb"}.
473 *
474 * <tr><th scope="row" style="vertical-align:top">{@code 'h'}
475 * <td> Same as {@code 'b'}.
476 *
477 * <tr><th scope="row" style="vertical-align:top">{@code 'A'}
478 * <td> Locale-specific full name of the {@linkplain
479 * java.text.DateFormatSymbols#getWeekdays day of the week},
480 * e.g. {@code "Sunday"}, {@code "Monday"}
481 *
482 * <tr><th scope="row" style="vertical-align:top">{@code 'a'}
483 * <td> Locale-specific short name of the {@linkplain
484 * java.text.DateFormatSymbols#getShortWeekdays day of the week},
485 * e.g. {@code "Sun"}, {@code "Mon"}
486 *
487 * <tr><th scope="row" style="vertical-align:top">{@code 'C'}
488 * <td> Four-digit year divided by {@code 100}, formatted as two digits
489 * with leading zero as necessary, i.e. {@code 00 - 99}
490 *
491 * <tr><th scope="row" style="vertical-align:top">{@code 'Y'}
492 * <td> Year, formatted as at least four digits with leading zeros as
493 * necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
494 * calendar.
495 *
496 * <tr><th scope="row" style="vertical-align:top">{@code 'y'}
497 * <td> Last two digits of the year, formatted with leading zeros as
498 * necessary, i.e. {@code 00 - 99}.
499 *
500 * <tr><th scope="row" style="vertical-align:top">{@code 'j'}
501 * <td> Day of year, formatted as three digits with leading zeros as
502 * necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
503 *
504 * <tr><th scope="row" style="vertical-align:top">{@code 'm'}
505 * <td> Month, formatted as two digits with leading zeros as necessary,
506 * i.e. {@code 01 - 13}.
507 *
508 * <tr><th scope="row" style="vertical-align:top">{@code 'd'}
509 * <td> Day of month, formatted as two digits with leading zeros as
510 * necessary, i.e. {@code 01 - 31}
511 *
512 * <tr><th scope="row" style="vertical-align:top">{@code 'e'}
513 * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
514 *
515 * </tbody>
516 * </table>
517 *
518 * <p> The following conversion characters are used for formatting common
519 * date/time compositions.
520 *
521 * <table class="striped">
522 * <caption style="display:none">composites</caption>
523 * <tbody>
524 *
525 * <tr><th scope="row" style="vertical-align:top">{@code 'R'}
526 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
527 *
528 * <tr><th scope="row" style="vertical-align:top">{@code 'T'}
529 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
530 *
531 * <tr><th scope="row" style="vertical-align:top">{@code 'r'}
532 * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
533 * The location of the morning or afternoon marker ({@code '%Tp'}) may be
534 * locale-dependent.
535 *
536 * <tr><th scope="row" style="vertical-align:top">{@code 'D'}
537 * <td> Date formatted as {@code "%tm/%td/%ty"}.
538 *
539 * <tr><th scope="row" style="vertical-align:top">{@code 'F'}
540 * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO 8601</a>
541 * complete date formatted as {@code "%tY-%tm-%td"}.
542 *
543 * <tr><th scope="row" style="vertical-align:top">{@code 'c'}
544 * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
545 * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
546 *
547 * </tbody>
548 * </table>
549 *
550 * <p> Any characters not explicitly defined as date/time conversion suffixes
551 * are illegal and are reserved for future extensions.
552 *
553 * <h4> Flags </h4>
554 *
555 * <p> The following table summarizes the supported flags. <i>y</i> means the
556 * flag is supported for the indicated argument types.
557 *
558 * <table class="striped">
559 * <caption style="display:none">genConv</caption>
560 * <thead>
561 * <tr><th scope="col" style="vertical-align:bottom"> Flag <th scope="col" style="vertical-align:bottom"> General
562 * <th scope="col" style="vertical-align:bottom"> Character <th scope="col" style="vertical-align:bottom"> Integral
563 * <th scope="col" style="vertical-align:bottom"> Floating Point
564 * <th scope="col" style="vertical-align:bottom"> Date/Time
565 * <th scope="col" style="vertical-align:bottom"> Description
566 * </thead>
567 * <tbody>
568 * <tr><th scope="row"> '-' <td style="text-align:center; vertical-align:top"> y
569 * <td style="text-align:center; vertical-align:top"> y
570 * <td style="text-align:center; vertical-align:top"> y
571 * <td style="text-align:center; vertical-align:top"> y
572 * <td style="text-align:center; vertical-align:top"> y
573 * <td> The result will be left-justified.
574 *
575 * <tr><th scope="row"> '#' <td style="text-align:center; vertical-align:top"> y<sup>1</sup>
576 * <td style="text-align:center; vertical-align:top"> -
577 * <td style="text-align:center; vertical-align:top"> y<sup>3</sup>
578 * <td style="text-align:center; vertical-align:top"> y
579 * <td style="text-align:center; vertical-align:top"> -
580 * <td> The result should use a conversion-dependent alternate form
581 *
582 * <tr><th scope="row"> '+' <td style="text-align:center; vertical-align:top"> -
583 * <td style="text-align:center; vertical-align:top"> -
584 * <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
585 * <td style="text-align:center; vertical-align:top"> y
586 * <td style="text-align:center; vertical-align:top"> -
587 * <td> The result will always include a sign
588 *
589 * <tr><th scope="row"> ' ' <td style="text-align:center; vertical-align:top"> -
590 * <td style="text-align:center; vertical-align:top"> -
591 * <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
592 * <td style="text-align:center; vertical-align:top"> y
593 * <td style="text-align:center; vertical-align:top"> -
594 * <td> The result will include a leading space for positive values
595 *
596 * <tr><th scope="row"> '0' <td style="text-align:center; vertical-align:top"> -
597 * <td style="text-align:center; vertical-align:top"> -
598 * <td style="text-align:center; vertical-align:top"> y
599 * <td style="text-align:center; vertical-align:top"> y
600 * <td style="text-align:center; vertical-align:top"> -
601 * <td> The result will be zero-padded
602 *
603 * <tr><th scope="row"> ',' <td style="text-align:center; vertical-align:top"> -
604 * <td style="text-align:center; vertical-align:top"> -
605 * <td style="text-align:center; vertical-align:top"> y<sup>2</sup>
606 * <td style="text-align:center; vertical-align:top"> y<sup>5</sup>
607 * <td style="text-align:center; vertical-align:top"> -
608 * <td> The result will include locale-specific {@linkplain
609 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
610 *
611 * <tr><th scope="row"> '(' <td style="text-align:center; vertical-align:top"> -
612 * <td style="text-align:center; vertical-align:top"> -
613 * <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
614 * <td style="text-align:center; vertical-align:top"> y<sup>5</sup>
615 * <td style="text-align:center"> -
616 * <td> The result will enclose negative numbers in parentheses
617 *
618 * </tbody>
619 * </table>
620 *
621 * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
622 *
623 * <p> <sup>2</sup> For {@code 'd'} conversion only.
624 *
625 * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
626 * conversions only.
627 *
628 * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
629 * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
630 * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
631 * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
632 *
633 * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
634 * {@code 'g'}, and {@code 'G'} conversions only.
635 *
636 * <p> Any characters not explicitly defined as flags are illegal and are
637 * reserved for future extensions.
638 *
639 * <h4> Width </h4>
640 *
641 * <p> The width is the minimum number of characters to be written to the
642 * output. For the line separator conversion, width is not applicable; if it
643 * is provided, an exception will be thrown.
644 *
645 * <h4> Precision </h4>
646 *
647 * <p> For general argument types, the precision is the maximum number of
648 * characters to be written to the output.
649 *
650 * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
651 * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
652 * radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the
653 * precision is the total number of digits in the resulting magnitude after
654 * rounding.
655 *
656 * <p> For character, integral, and date/time argument types and the percent
657 * and line separator conversions, the precision is not applicable; if a
658 * precision is provided, an exception will be thrown.
659 *
660 * <h4> Argument Index </h4>
661 *
662 * <p> The argument index is a decimal integer indicating the position of the
663 * argument in the argument list. The first argument is referenced by
664 * "{@code 1$}", the second by "{@code 2$}", etc.
665 *
666 * <p> Another way to reference arguments by position is to use the
667 * {@code '<'} (<code>'\u003c'</code>) flag, which causes the argument for
668 * the previous format specifier to be re-used. For example, the following two
669 * statements would produce identical strings:
670 *
671 * <blockquote><pre>
672 * Calendar c = ...;
673 * String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
674 *
675 * String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);
676 * </pre></blockquote>
677 *
678 * <hr>
679 * <h3><a id="detail">Details</a></h3>
680 *
681 * <p> This section is intended to provide behavioral details for formatting,
682 * including conditions and exceptions, supported data types, localization, and
683 * interactions between flags, conversions, and data types. For an overview of
684 * formatting concepts, refer to the <a href="#summary">Summary</a>
685 *
686 * <p> Any characters not explicitly defined as conversions, date/time
687 * conversion suffixes, or flags are illegal and are reserved for
688 * future extensions. Use of such a character in a format string will
689 * cause an {@link UnknownFormatConversionException} or {@link
690 * UnknownFormatFlagsException} to be thrown.
691 *
692 * <p> If the format specifier contains a width or precision with an invalid
693 * value or which is otherwise unsupported, then a {@link
694 * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
695 * respectively will be thrown.
696 *
697 * <p> If a format specifier contains a conversion character that is not
698 * applicable to the corresponding argument, then an {@link
699 * IllegalFormatConversionException} will be thrown.
700 *
701 * <p> All specified exceptions may be thrown by any of the {@code format}
702 * methods of {@code Formatter} as well as by any {@code format} convenience
703 * methods such as {@link String#format(String,Object...) String.format} and
704 * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
705 *
706 * <p> For category <i>General</i>, <i>Character</i>, <i>Numberic</i>,
707 * <i>Integral</i> and <i>Date/Time</i> conversion, unless otherwise specified,
708 * if the argument <i>arg</i> is {@code null}, then the result is "{@code null}".
709 *
710 * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
711 * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
712 * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
713 * corresponding lower-case conversion characters except that the result is
714 * converted to upper case according to the rules of the prevailing {@link
715 * java.util.Locale Locale}. If there is no explicit locale specified,
716 * either at the construction of the instance or as a parameter to its method
717 * invocation, then the {@link java.util.Locale.Category#FORMAT default locale}
718 * is used.
719 *
720 * <h4><a id="dgen">General</a></h4>
721 *
722 * <p> The following general conversions may be applied to any argument type:
723 *
724 * <table class="striped">
725 * <caption style="display:none">dgConv</caption>
726 * <tbody>
727 *
728 * <tr><th scope="row" style="vertical-align:top"> {@code 'b'}
729 * <td style="vertical-align:top"> <code>'\u0062'</code>
730 * <td> Produces either "{@code true}" or "{@code false}" as returned by
731 * {@link Boolean#toString(boolean)}.
732 *
733 * <p> If the argument is {@code null}, then the result is
734 * "{@code false}". If the argument is a {@code boolean} or {@link
735 * Boolean}, then the result is the string returned by {@link
736 * String#valueOf(boolean) String.valueOf()}. Otherwise, the result is
737 * "{@code true}".
738 *
739 * <p> If the {@code '#'} flag is given, then a {@link
740 * FormatFlagsConversionMismatchException} will be thrown.
741 *
742 * <tr><th scope="row" style="vertical-align:top"> {@code 'B'}
743 * <td style="vertical-align:top"> <code>'\u0042'</code>
744 * <td> The upper-case variant of {@code 'b'}.
745 *
746 * <tr><th scope="row" style="vertical-align:top"> {@code 'h'}
747 * <td style="vertical-align:top"> <code>'\u0068'</code>
748 * <td> Produces a string representing the hash code value of the object.
749 *
750 * <p> The result is obtained by invoking
751 * {@code Integer.toHexString(arg.hashCode())}.
752 *
753 * <p> If the {@code '#'} flag is given, then a {@link
754 * FormatFlagsConversionMismatchException} will be thrown.
755 *
756 * <tr><th scope="row" style="vertical-align:top"> {@code 'H'}
757 * <td style="vertical-align:top"> <code>'\u0048'</code>
758 * <td> The upper-case variant of {@code 'h'}.
759 *
760 * <tr><th scope="row" style="vertical-align:top"> {@code 's'}
761 * <td style="vertical-align:top"> <code>'\u0073'</code>
762 * <td> Produces a string.
763 *
764 * <p> If the argument implements {@link Formattable}, then
765 * its {@link Formattable#formatTo formatTo} method is invoked.
766 * Otherwise, the result is obtained by invoking the argument's
767 * {@code toString()} method.
768 *
769 * <p> If the {@code '#'} flag is given and the argument is not a {@link
770 * Formattable} , then a {@link FormatFlagsConversionMismatchException}
771 * will be thrown.
772 *
773 * <tr><th scope="row" style="vertical-align:top"> {@code 'S'}
774 * <td style="vertical-align:top"> <code>'\u0053'</code>
775 * <td> The upper-case variant of {@code 's'}.
776 *
777 * </tbody>
778 * </table>
779 *
780 * <p> The following <a id="dFlags">flags</a> apply to general conversions:
781 *
782 * <table class="striped">
783 * <caption style="display:none">dFlags</caption>
784 * <tbody>
785 *
786 * <tr><th scope="row" style="vertical-align:top"> {@code '-'}
787 * <td style="vertical-align:top"> <code>'\u002d'</code>
788 * <td> Left justifies the output. Spaces (<code>'\u0020'</code>) will be
789 * added at the end of the converted value as required to fill the minimum
790 * width of the field. If the width is not provided, then a {@link
791 * MissingFormatWidthException} will be thrown. If this flag is not given
792 * then the output will be right-justified.
793 *
794 * <tr><th scope="row" style="vertical-align:top"> {@code '#'}
795 * <td style="vertical-align:top"> <code>'\u0023'</code>
796 * <td> Requires the output use an alternate form. The definition of the
797 * form is specified by the conversion.
798 *
799 * </tbody>
800 * </table>
801 *
802 * <p> The <a id="genWidth">width</a> is the minimum number of characters to
803 * be written to the
804 * output. If the length of the converted value is less than the width then
805 * the output will be padded by <code>' '</code> (<code>'\u0020'</code>)
806 * until the total number of characters equals the width. The padding is on
807 * the left by default. If the {@code '-'} flag is given, then the padding
808 * will be on the right. If the width is not specified then there is no
809 * minimum.
810 *
811 * <p> The precision is the maximum number of characters to be written to the
812 * output. The precision is applied before the width, thus the output will be
813 * truncated to {@code precision} characters even if the width is greater than
814 * the precision. If the precision is not specified then there is no explicit
815 * limit on the number of characters.
816 *
817 * <h4><a id="dchar">Character</a></h4>
818 *
819 * This conversion may be applied to {@code char} and {@link Character}. It
820 * may also be applied to the types {@code byte}, {@link Byte},
821 * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
822 * {@link Character#isValidCodePoint} returns {@code true}. If it returns
823 * {@code false} then an {@link IllegalFormatCodePointException} will be
824 * thrown.
825 *
826 * <table class="striped">
827 * <caption style="display:none">charConv</caption>
828 * <tbody>
829 *
830 * <tr><th scope="row" style="vertical-align:top"> {@code 'c'}
831 * <td style="vertical-align:top"> <code>'\u0063'</code>
832 * <td> Formats the argument as a Unicode character as described in <a
833 * href="../lang/Character.html#unicode">Unicode Character
834 * Representation</a>. This may be more than one 16-bit {@code char} in
835 * the case where the argument represents a supplementary character.
836 *
837 * <p> If the {@code '#'} flag is given, then a {@link
838 * FormatFlagsConversionMismatchException} will be thrown.
839 *
840 * <tr><th scope="row" style="vertical-align:top"> {@code 'C'}
841 * <td style="vertical-align:top"> <code>'\u0043'</code>
842 * <td> The upper-case variant of {@code 'c'}.
843 *
844 * </tbody>
845 * </table>
846 *
847 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
848 * conversions</a> applies. If the {@code '#'} flag is given, then a {@link
849 * FormatFlagsConversionMismatchException} will be thrown.
850 *
851 * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
852 *
853 * <p> The precision is not applicable. If the precision is specified then an
854 * {@link IllegalFormatPrecisionException} will be thrown.
855 *
856 * <h4><a id="dnum">Numeric</a></h4>
857 *
858 * <p> Numeric conversions are divided into the following categories:
859 *
860 * <ol>
861 *
862 * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
863 *
864 * <li> <a href="#dnbint"><b>BigInteger</b></a>
865 *
866 * <li> <a href="#dndec"><b>Float and Double</b></a>
867 *
868 * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
869 *
870 * </ol>
871 *
872 * <p> Numeric types will be formatted according to the following algorithm:
873 *
874 * <p><b><a id="L10nAlgorithm"> Number Localization Algorithm</a></b>
875 *
876 * <p> After digits are obtained for the integer part, fractional part, and
877 * exponent (as appropriate for the data type), the following transformation
878 * is applied:
879 *
880 * <ol>
881 *
882 * <li> Each digit character <i>d</i> in the string is replaced by a
883 * locale-specific digit computed relative to the current locale's
884 * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
885 * <i>z</i>; that is <i>d - </i> {@code '0'}
886 * <i> + z</i>.
887 *
888 * <li> If a decimal separator is present, a locale-specific {@linkplain
889 * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
890 * substituted.
891 *
892 * <li> If the {@code ','} (<code>'\u002c'</code>)
893 * <a id="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
894 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
895 * inserted by scanning the integer part of the string from least significant
896 * to most significant digits and inserting a separator at intervals defined by
897 * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
898 * size}.
899 *
900 * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
901 * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
902 * after the sign character, if any, and before the first non-zero digit, until
903 * the length of the string is equal to the requested field width.
904 *
905 * <li> If the value is negative and the {@code '('} flag is given, then a
906 * {@code '('} (<code>'\u0028'</code>) is prepended and a {@code ')'}
907 * (<code>'\u0029'</code>) is appended.
908 *
909 * <li> If the value is negative (or floating-point negative zero) and
910 * {@code '('} flag is not given, then a {@code '-'} (<code>'\u002d'</code>)
911 * is prepended.
912 *
913 * <li> If the {@code '+'} flag is given and the value is positive or zero (or
914 * floating-point positive zero), then a {@code '+'} (<code>'\u002b'</code>)
915 * will be prepended.
916 *
917 * </ol>
918 *
919 * <p> If the value is NaN or positive infinity the literal strings "NaN" or
920 * "Infinity" respectively, will be output. If the value is negative infinity,
921 * then the output will be "(Infinity)" if the {@code '('} flag is given
922 * otherwise the output will be "-Infinity". These values are not localized.
923 *
924 * <p><a id="dnint"><b> Byte, Short, Integer, and Long </b></a>
925 *
926 * <p> The following conversions may be applied to {@code byte}, {@link Byte},
927 * {@code short}, {@link Short}, {@code int} and {@link Integer},
928 * {@code long}, and {@link Long}.
929 *
930 * <table class="striped">
931 * <caption style="display:none">IntConv</caption>
932 * <tbody>
933 *
934 * <tr><th scope="row" style="vertical-align:top"> {@code 'd'}
935 * <td style="vertical-align:top"> <code>'\u0064'</code>
936 * <td> Formats the argument as a decimal integer. The <a
937 * href="#L10nAlgorithm">localization algorithm</a> is applied.
938 *
939 * <p> If the {@code '0'} flag is given and the value is negative, then
940 * the zero padding will occur after the sign.
941 *
942 * <p> If the {@code '#'} flag is given then a {@link
943 * FormatFlagsConversionMismatchException} will be thrown.
944 *
945 * <tr><th scope="row" style="vertical-align:top"> {@code 'o'}
946 * <td style="vertical-align:top"> <code>'\u006f'</code>
947 * <td> Formats the argument as an integer in base eight. No localization
948 * is applied.
949 *
950 * <p> If <i>x</i> is negative then the result will be an unsigned value
951 * generated by adding 2<sup>n</sup> to the value where {@code n} is the
952 * number of bits in the type as returned by the static {@code SIZE} field
953 * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
954 * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
955 * classes as appropriate.
956 *
957 * <p> If the {@code '#'} flag is given then the output will always begin
958 * with the radix indicator {@code '0'}.
959 *
960 * <p> If the {@code '0'} flag is given then the output will be padded
961 * with leading zeros to the field width following any indication of sign.
962 *
963 * <p> If {@code '('}, {@code '+'}, ' ', or {@code ','} flags
964 * are given then a {@link FormatFlagsConversionMismatchException} will be
965 * thrown.
966 *
967 * <tr><th scope="row" style="vertical-align:top"> {@code 'x'}
968 * <td style="vertical-align:top"> <code>'\u0078'</code>
969 * <td> Formats the argument as an integer in base sixteen. No
970 * localization is applied.
971 *
972 * <p> If <i>x</i> is negative then the result will be an unsigned value
973 * generated by adding 2<sup>n</sup> to the value where {@code n} is the
974 * number of bits in the type as returned by the static {@code SIZE} field
975 * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
976 * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
977 * classes as appropriate.
978 *
979 * <p> If the {@code '#'} flag is given then the output will always begin
980 * with the radix indicator {@code "0x"}.
981 *
982 * <p> If the {@code '0'} flag is given then the output will be padded to
983 * the field width with leading zeros after the radix indicator or sign (if
984 * present).
985 *
986 * <p> If {@code '('}, <code>' '</code>, {@code '+'}, or
987 * {@code ','} flags are given then a {@link
988 * FormatFlagsConversionMismatchException} will be thrown.
989 *
990 * <tr><th scope="row" style="vertical-align:top"> {@code 'X'}
991 * <td style="vertical-align:top"> <code>'\u0058'</code>
992 * <td> The upper-case variant of {@code 'x'}. The entire string
993 * representing the number will be converted to {@linkplain
994 * String#toUpperCase upper case} including the {@code 'x'} (if any) and
995 * all hexadecimal digits {@code 'a'} - {@code 'f'}
996 * (<code>'\u0061'</code> - <code>'\u0066'</code>).
997 *
998 * </tbody>
999 * </table>
1000 *
1001 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1002 * both the {@code '#'} and the {@code '0'} flags are given, then result will
1003 * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
1004 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1005 * and the value.
1006 *
1007 * <p> If the {@code '-'} flag is not given, then the space padding will occur
1008 * before the sign.
1009 *
1010 * <p> The following <a id="intFlags">flags</a> apply to numeric integral
1011 * conversions:
1012 *
1013 * <table class="striped">
1014 * <caption style="display:none">intFlags</caption>
1015 * <tbody>
1016 *
1017 * <tr><th scope="row" style="vertical-align:top"> {@code '+'}
1018 * <td style="vertical-align:top"> <code>'\u002b'</code>
1019 * <td> Requires the output to include a positive sign for all positive
1020 * numbers. If this flag is not given then only negative values will
1021 * include a sign.
1022 *
1023 * <p> If both the {@code '+'} and <code>' '</code> flags are given
1024 * then an {@link IllegalFormatFlagsException} will be thrown.
1025 *
1026 * <tr><th scope="row" style="vertical-align:top"> <code>' '</code>
1027 * <td style="vertical-align:top"> <code>'\u0020'</code>
1028 * <td> Requires the output to include a single extra space
1029 * (<code>'\u0020'</code>) for non-negative values.
1030 *
1031 * <p> If both the {@code '+'} and <code>' '</code> flags are given
1032 * then an {@link IllegalFormatFlagsException} will be thrown.
1033 *
1034 * <tr><th scope="row" style="vertical-align:top"> {@code '0'}
1035 * <td style="vertical-align:top"> <code>'\u0030'</code>
1036 * <td> Requires the output to be padded with leading {@linkplain
1037 * java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1038 * width following any sign or radix indicator except when converting NaN
1039 * or infinity. If the width is not provided, then a {@link
1040 * MissingFormatWidthException} will be thrown.
1041 *
1042 * <p> If both the {@code '-'} and {@code '0'} flags are given then an
1043 * {@link IllegalFormatFlagsException} will be thrown.
1044 *
1045 * <tr><th scope="row" style="vertical-align:top"> {@code ','}
1046 * <td style="vertical-align:top"> <code>'\u002c'</code>
1047 * <td> Requires the output to include the locale-specific {@linkplain
1048 * java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1049 * described in the <a href="#L10nGroup">"group" section</a> of the
1050 * localization algorithm.
1051 *
1052 * <tr><th scope="row" style="vertical-align:top"> {@code '('}
1053 * <td style="vertical-align:top"> <code>'\u0028'</code>
1054 * <td> Requires the output to prepend a {@code '('}
1055 * (<code>'\u0028'</code>) and append a {@code ')'}
1056 * (<code>'\u0029'</code>) to negative values.
1057 *
1058 * </tbody>
1059 * </table>
1060 *
1061 * <p> If no <a id="intdFlags">flags</a> are given the default formatting is
1062 * as follows:
1063 *
1064 * <ul>
1065 *
1066 * <li> The output is right-justified within the {@code width}
1067 *
1068 * <li> Negative numbers begin with a {@code '-'} (<code>'\u002d'</code>)
1069 *
1070 * <li> Positive numbers and zero do not include a sign or extra leading
1071 * space
1072 *
1073 * <li> No grouping separators are included
1074 *
1075 * </ul>
1076 *
1077 * <p> The <a id="intWidth">width</a> is the minimum number of characters to
1078 * be written to the output. This includes any signs, digits, grouping
1079 * separators, radix indicator, and parentheses. If the length of the
1080 * converted value is less than the width then the output will be padded by
1081 * spaces (<code>'\u0020'</code>) until the total number of characters equals
1082 * width. The padding is on the left by default. If {@code '-'} flag is
1083 * given then the padding will be on the right. If width is not specified then
1084 * there is no minimum.
1085 *
1086 * <p> The precision is not applicable. If precision is specified then an
1087 * {@link IllegalFormatPrecisionException} will be thrown.
1088 *
1089 * <p><a id="dnbint"><b> BigInteger </b></a>
1090 *
1091 * <p> The following conversions may be applied to {@link
1092 * java.math.BigInteger}.
1093 *
1094 * <table class="striped">
1095 * <caption style="display:none">bIntConv</caption>
1096 * <tbody>
1097 *
1098 * <tr><th scope="row" style="vertical-align:top"> {@code 'd'}
1099 * <td style="vertical-align:top"> <code>'\u0064'</code>
1100 * <td> Requires the output to be formatted as a decimal integer. The <a
1101 * href="#L10nAlgorithm">localization algorithm</a> is applied.
1102 *
1103 * <p> If the {@code '#'} flag is given {@link
1104 * FormatFlagsConversionMismatchException} will be thrown.
1105 *
1106 * <tr><th scope="row" style="vertical-align:top"> {@code 'o'}
1107 * <td style="vertical-align:top"> <code>'\u006f'</code>
1108 * <td> Requires the output to be formatted as an integer in base eight.
1109 * No localization is applied.
1110 *
1111 * <p> If <i>x</i> is negative then the result will be a signed value
1112 * beginning with {@code '-'} (<code>'\u002d'</code>). Signed output is
1113 * allowed for this type because unlike the primitive types it is not
1114 * possible to create an unsigned equivalent without assuming an explicit
1115 * data-type size.
1116 *
1117 * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1118 * then the result will begin with {@code '+'} (<code>'\u002b'</code>).
1119 *
1120 * <p> If the {@code '#'} flag is given then the output will always begin
1121 * with {@code '0'} prefix.
1122 *
1123 * <p> If the {@code '0'} flag is given then the output will be padded
1124 * with leading zeros to the field width following any indication of sign.
1125 *
1126 * <p> If the {@code ','} flag is given then a {@link
1127 * FormatFlagsConversionMismatchException} will be thrown.
1128 *
1129 * <tr><th scope="row" style="vertical-align:top"> {@code 'x'}
1130 * <td style="vertical-align:top"> <code>'\u0078'</code>
1131 * <td> Requires the output to be formatted as an integer in base
1132 * sixteen. No localization is applied.
1133 *
1134 * <p> If <i>x</i> is negative then the result will be a signed value
1135 * beginning with {@code '-'} (<code>'\u002d'</code>). Signed output is
1136 * allowed for this type because unlike the primitive types it is not
1137 * possible to create an unsigned equivalent without assuming an explicit
1138 * data-type size.
1139 *
1140 * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1141 * then the result will begin with {@code '+'} (<code>'\u002b'</code>).
1142 *
1143 * <p> If the {@code '#'} flag is given then the output will always begin
1144 * with the radix indicator {@code "0x"}.
1145 *
1146 * <p> If the {@code '0'} flag is given then the output will be padded to
1147 * the field width with leading zeros after the radix indicator or sign (if
1148 * present).
1149 *
1150 * <p> If the {@code ','} flag is given then a {@link
1151 * FormatFlagsConversionMismatchException} will be thrown.
1152 *
1153 * <tr><th scope="row" style="vertical-align:top"> {@code 'X'}
1154 * <td style="vertical-align:top"> <code>'\u0058'</code>
1155 * <td> The upper-case variant of {@code 'x'}. The entire string
1156 * representing the number will be converted to {@linkplain
1157 * String#toUpperCase upper case} including the {@code 'x'} (if any) and
1158 * all hexadecimal digits {@code 'a'} - {@code 'f'}
1159 * (<code>'\u0061'</code> - <code>'\u0066'</code>).
1160 *
1161 * </tbody>
1162 * </table>
1163 *
1164 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1165 * both the {@code '#'} and the {@code '0'} flags are given, then result will
1166 * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1167 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1168 * and the value.
1169 *
1170 * <p> If the {@code '0'} flag is given and the value is negative, then the
1171 * zero padding will occur after the sign.
1172 *
1173 * <p> If the {@code '-'} flag is not given, then the space padding will occur
1174 * before the sign.
1175 *
1176 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1177 * Long apply. The <a href="#intdFlags">default behavior</a> when no flags are
1178 * given is the same as for Byte, Short, Integer, and Long.
1179 *
1180 * <p> The specification of <a href="#intWidth">width</a> is the same as
1181 * defined for Byte, Short, Integer, and Long.
1182 *
1183 * <p> The precision is not applicable. If precision is specified then an
1184 * {@link IllegalFormatPrecisionException} will be thrown.
1185 *
1186 * <p><a id="dndec"><b> Float and Double</b></a>
1187 *
1188 * <p> The following conversions may be applied to {@code float}, {@link
1189 * Float}, {@code double} and {@link Double}.
1190 *
1191 * <table class="striped">
1192 * <caption style="display:none">floatConv</caption>
1193 * <tbody>
1194 *
1195 * <tr><th scope="row" style="vertical-align:top"> {@code 'e'}
1196 * <td style="vertical-align:top"> <code>'\u0065'</code>
1197 * <td> Requires the output to be formatted using <a
1198 * id="scientific">computerized scientific notation</a>. The <a
1199 * href="#L10nAlgorithm">localization algorithm</a> is applied.
1200 *
1201 * <p> The formatting of the magnitude <i>m</i> depends upon its value.
1202 *
1203 * <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1204 * "Infinity", respectively, will be output. These values are not
1205 * localized.
1206 *
1207 * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1208 * will be {@code "+00"}.
1209 *
1210 * <p> Otherwise, the result is a string that represents the sign and
1211 * magnitude (absolute value) of the argument. The formatting of the sign
1212 * is described in the <a href="#L10nAlgorithm">localization
1213 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1214 * value.
1215 *
1216 * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1217 * <= <i>m</i> < 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1218 * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1219 * that 1 <= <i>a</i> < 10. The magnitude is then represented as the
1220 * integer part of <i>a</i>, as a single decimal digit, followed by the
1221 * decimal separator followed by decimal digits representing the fractional
1222 * part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1223 * (<code>'\u0065'</code>), followed by the sign of the exponent, followed
1224 * by a representation of <i>n</i> as a decimal integer, as produced by the
1225 * method {@link Long#toString(long, int)}, and zero-padded to include at
1226 * least two digits.
1227 *
1228 * <p> The number of digits in the result for the fractional part of
1229 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1230 * specified then the default value is {@code 6}. If the precision is less
1231 * than the number of digits which would appear after the decimal point in
1232 * the string returned by {@link Float#toString(float)} or {@link
1233 * Double#toString(double)} respectively, then the value will be rounded
1234 * using the {@linkplain java.math.RoundingMode#HALF_UP round half up
1235 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1236 * For a canonical representation of the value, use {@link
1237 * Float#toString(float)} or {@link Double#toString(double)} as
1238 * appropriate.
1239 *
1240 * <p>If the {@code ','} flag is given, then an {@link
1241 * FormatFlagsConversionMismatchException} will be thrown.
1242 *
1243 * <tr><th scope="row" style="vertical-align:top"> {@code 'E'}
1244 * <td style="vertical-align:top"> <code>'\u0045'</code>
1245 * <td> The upper-case variant of {@code 'e'}. The exponent symbol
1246 * will be {@code 'E'} (<code>'\u0045'</code>).
1247 *
1248 * <tr><th scope="row" style="vertical-align:top"> {@code 'g'}
1249 * <td style="vertical-align:top"> <code>'\u0067'</code>
1250 * <td> Requires the output to be formatted in general scientific notation
1251 * as described below. The <a href="#L10nAlgorithm">localization
1252 * algorithm</a> is applied.
1253 *
1254 * <p> After rounding for the precision, the formatting of the resulting
1255 * magnitude <i>m</i> depends on its value.
1256 *
1257 * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1258 * than 10<sup>precision</sup> then it is represented in <i><a
1259 * href="#decimal">decimal format</a></i>.
1260 *
1261 * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1262 * 10<sup>precision</sup>, then it is represented in <i><a
1263 * href="#scientific">computerized scientific notation</a></i>.
1264 *
1265 * <p> The total number of significant digits in <i>m</i> is equal to the
1266 * precision. If the precision is not specified, then the default value is
1267 * {@code 6}. If the precision is {@code 0}, then it is taken to be
1268 * {@code 1}.
1269 *
1270 * <p> If the {@code '#'} flag is given then an {@link
1271 * FormatFlagsConversionMismatchException} will be thrown.
1272 *
1273 * <tr><th scope="row" style="vertical-align:top"> {@code 'G'}
1274 * <td style="vertical-align:top"> <code>'\u0047'</code>
1275 * <td> The upper-case variant of {@code 'g'}.
1276 *
1277 * <tr><th scope="row" style="vertical-align:top"> {@code 'f'}
1278 * <td style="vertical-align:top"> <code>'\u0066'</code>
1279 * <td> Requires the output to be formatted using <a id="decimal">decimal
1280 * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is
1281 * applied.
1282 *
1283 * <p> The result is a string that represents the sign and magnitude
1284 * (absolute value) of the argument. The formatting of the sign is
1285 * described in the <a href="#L10nAlgorithm">localization
1286 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1287 * value.
1288 *
1289 * <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1290 * "Infinity", respectively, will be output. These values are not
1291 * localized.
1292 *
1293 * <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1294 * leading zeroes, followed by the decimal separator followed by one or
1295 * more decimal digits representing the fractional part of <i>m</i>.
1296 *
1297 * <p> The number of digits in the result for the fractional part of
1298 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1299 * specified then the default value is {@code 6}. If the precision is less
1300 * than the number of digits which would appear after the decimal point in
1301 * the string returned by {@link Float#toString(float)} or {@link
1302 * Double#toString(double)} respectively, then the value will be rounded
1303 * using the {@linkplain java.math.RoundingMode#HALF_UP round half up
1304 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1305 * For a canonical representation of the value, use {@link
1306 * Float#toString(float)} or {@link Double#toString(double)} as
1307 * appropriate.
1308 *
1309 * <tr><th scope="row" style="vertical-align:top"> {@code 'a'}
1310 * <td style="vertical-align:top"> <code>'\u0061'</code>
1311 * <td> Requires the output to be formatted in hexadecimal exponential
1312 * form. No localization is applied.
1313 *
1314 * <p> The result is a string that represents the sign and magnitude
1315 * (absolute value) of the argument <i>x</i>.
1316 *
1317 * <p> If <i>x</i> is negative or a negative-zero value then the result
1318 * will begin with {@code '-'} (<code>'\u002d'</code>).
1319 *
1320 * <p> If <i>x</i> is positive or a positive-zero value and the
1321 * {@code '+'} flag is given then the result will begin with {@code '+'}
1322 * (<code>'\u002b'</code>).
1323 *
1324 * <p> The formatting of the magnitude <i>m</i> depends upon its value.
1325 *
1326 * <ul>
1327 *
1328 * <li> If the value is NaN or infinite, the literal strings "NaN" or
1329 * "Infinity", respectively, will be output.
1330 *
1331 * <li> If <i>m</i> is zero then it is represented by the string
1332 * {@code "0x0.0p0"}.
1333 *
1334 * <li> If <i>m</i> is a {@code double} value with a normalized
1335 * representation then substrings are used to represent the significand and
1336 * exponent fields. The significand is represented by the characters
1337 * {@code "0x1."} followed by the hexadecimal representation of the rest
1338 * of the significand as a fraction. The exponent is represented by
1339 * {@code 'p'} (<code>'\u0070'</code>) followed by a decimal string of the
1340 * unbiased exponent as if produced by invoking {@link
1341 * Integer#toString(int) Integer.toString} on the exponent value. If the
1342 * precision is specified, the value is rounded to the given number of
1343 * hexadecimal digits.
1344 *
1345 * <li> If <i>m</i> is a {@code double} value with a subnormal
1346 * representation then, unless the precision is specified to be in the range
1347 * 1 through 12, inclusive, the significand is represented by the characters
1348 * {@code '0x0.'} followed by the hexadecimal representation of the rest of
1349 * the significand as a fraction, and the exponent represented by
1350 * {@code 'p-1022'}. If the precision is in the interval
1351 * [1, 12], the subnormal value is normalized such that it
1352 * begins with the characters {@code '0x1.'}, rounded to the number of
1353 * hexadecimal digits of precision, and the exponent adjusted
1354 * accordingly. Note that there must be at least one nonzero digit in a
1355 * subnormal significand.
1356 *
1357 * </ul>
1358 *
1359 * <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1360 * FormatFlagsConversionMismatchException} will be thrown.
1361 *
1362 * <tr><th scope="row" style="vertical-align:top"> {@code 'A'}
1363 * <td style="vertical-align:top"> <code>'\u0041'</code>
1364 * <td> The upper-case variant of {@code 'a'}. The entire string
1365 * representing the number will be converted to upper case including the
1366 * {@code 'x'} (<code>'\u0078'</code>) and {@code 'p'}
1367 * (<code>'\u0070'</code> and all hexadecimal digits {@code 'a'} -
1368 * {@code 'f'} (<code>'\u0061'</code> - <code>'\u0066'</code>).
1369 *
1370 * </tbody>
1371 * </table>
1372 *
1373 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1374 * Long apply.
1375 *
1376 * <p> If the {@code '#'} flag is given, then the decimal separator will
1377 * always be present.
1378 *
1379 * <p> If no <a id="floatdFlags">flags</a> are given the default formatting
1380 * is as follows:
1381 *
1382 * <ul>
1383 *
1384 * <li> The output is right-justified within the {@code width}
1385 *
1386 * <li> Negative numbers begin with a {@code '-'}
1387 *
1388 * <li> Positive numbers and positive zero do not include a sign or extra
1389 * leading space
1390 *
1391 * <li> No grouping separators are included
1392 *
1393 * <li> The decimal separator will only appear if a digit follows it
1394 *
1395 * </ul>
1396 *
1397 * <p> The <a id="floatDWidth">width</a> is the minimum number of characters
1398 * to be written to the output. This includes any signs, digits, grouping
1399 * separators, decimal separators, exponential symbol, radix indicator,
1400 * parentheses, and strings representing infinity and NaN as applicable. If
1401 * the length of the converted value is less than the width then the output
1402 * will be padded by spaces (<code>'\u0020'</code>) until the total number of
1403 * characters equals width. The padding is on the left by default. If the
1404 * {@code '-'} flag is given then the padding will be on the right. If width
1405 * is not specified then there is no minimum.
1406 *
1407 * <p> If the <a id="floatDPrec">conversion</a> is {@code 'e'},
1408 * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1409 * after the decimal separator. If the precision is not specified, then it is
1410 * assumed to be {@code 6}.
1411 *
1412 * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1413 * the total number of significant digits in the resulting magnitude after
1414 * rounding. If the precision is not specified, then the default value is
1415 * {@code 6}. If the precision is {@code 0}, then it is taken to be
1416 * {@code 1}.
1417 *
1418 * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1419 * is the number of hexadecimal digits after the radix point. If the
1420 * precision is not provided, then all of the digits as returned by {@link
1421 * Double#toHexString(double)} will be output.
1422 *
1423 * <p><a id="dnbdec"><b> BigDecimal </b></a>
1424 *
1425 * <p> The following conversions may be applied {@link java.math.BigDecimal
1426 * BigDecimal}.
1427 *
1428 * <table class="striped">
1429 * <caption style="display:none">floatConv</caption>
1430 * <tbody>
1431 *
1432 * <tr><th scope="row" style="vertical-align:top"> {@code 'e'}
1433 * <td style="vertical-align:top"> <code>'\u0065'</code>
1434 * <td> Requires the output to be formatted using <a
1435 * id="bscientific">computerized scientific notation</a>. The <a
1436 * href="#L10nAlgorithm">localization algorithm</a> is applied.
1437 *
1438 * <p> The formatting of the magnitude <i>m</i> depends upon its value.
1439 *
1440 * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1441 * will be {@code "+00"}.
1442 *
1443 * <p> Otherwise, the result is a string that represents the sign and
1444 * magnitude (absolute value) of the argument. The formatting of the sign
1445 * is described in the <a href="#L10nAlgorithm">localization
1446 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1447 * value.
1448 *
1449 * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1450 * <= <i>m</i> < 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1451 * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1452 * that 1 <= <i>a</i> < 10. The magnitude is then represented as the
1453 * integer part of <i>a</i>, as a single decimal digit, followed by the
1454 * decimal separator followed by decimal digits representing the fractional
1455 * part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1456 * (<code>'\u0065'</code>), followed by the sign of the exponent, followed
1457 * by a representation of <i>n</i> as a decimal integer, as produced by the
1458 * method {@link Long#toString(long, int)}, and zero-padded to include at
1459 * least two digits.
1460 *
1461 * <p> The number of digits in the result for the fractional part of
1462 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1463 * specified then the default value is {@code 6}. If the precision is
1464 * less than the number of digits to the right of the decimal point then
1465 * the value will be rounded using the
1466 * {@linkplain java.math.RoundingMode#HALF_UP round half up
1467 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1468 * For a canonical representation of the value, use {@link
1469 * BigDecimal#toString()}.
1470 *
1471 * <p> If the {@code ','} flag is given, then an {@link
1472 * FormatFlagsConversionMismatchException} will be thrown.
1473 *
1474 * <tr><th scope="row" style="vertical-align:top"> {@code 'E'}
1475 * <td style="vertical-align:top"> <code>'\u0045'</code>
1476 * <td> The upper-case variant of {@code 'e'}. The exponent symbol
1477 * will be {@code 'E'} (<code>'\u0045'</code>).
1478 *
1479 * <tr><th scope="row" style="vertical-align:top"> {@code 'g'}
1480 * <td style="vertical-align:top"> <code>'\u0067'</code>
1481 * <td> Requires the output to be formatted in general scientific notation
1482 * as described below. The <a href="#L10nAlgorithm">localization
1483 * algorithm</a> is applied.
1484 *
1485 * <p> After rounding for the precision, the formatting of the resulting
1486 * magnitude <i>m</i> depends on its value.
1487 *
1488 * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1489 * than 10<sup>precision</sup> then it is represented in <i><a
1490 * href="#bdecimal">decimal format</a></i>.
1491 *
1492 * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1493 * 10<sup>precision</sup>, then it is represented in <i><a
1494 * href="#bscientific">computerized scientific notation</a></i>.
1495 *
1496 * <p> The total number of significant digits in <i>m</i> is equal to the
1497 * precision. If the precision is not specified, then the default value is
1498 * {@code 6}. If the precision is {@code 0}, then it is taken to be
1499 * {@code 1}.
1500 *
1501 * <p> If the {@code '#'} flag is given then an {@link
1502 * FormatFlagsConversionMismatchException} will be thrown.
1503 *
1504 * <tr><th scope="row" style="vertical-align:top"> {@code 'G'}
1505 * <td style="vertical-align:top"> <code>'\u0047'</code>
1506 * <td> The upper-case variant of {@code 'g'}.
1507 *
1508 * <tr><th scope="row" style="vertical-align:top"> {@code 'f'}
1509 * <td style="vertical-align:top"> <code>'\u0066'</code>
1510 * <td> Requires the output to be formatted using <a id="bdecimal">decimal
1511 * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is
1512 * applied.
1513 *
1514 * <p> The result is a string that represents the sign and magnitude
1515 * (absolute value) of the argument. The formatting of the sign is
1516 * described in the <a href="#L10nAlgorithm">localization
1517 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1518 * value.
1519 *
1520 * <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1521 * leading zeroes, followed by the decimal separator followed by one or
1522 * more decimal digits representing the fractional part of <i>m</i>.
1523 *
1524 * <p> The number of digits in the result for the fractional part of
1525 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1526 * specified then the default value is {@code 6}. If the precision is
1527 * less than the number of digits to the right of the decimal point
1528 * then the value will be rounded using the
1529 * {@linkplain java.math.RoundingMode#HALF_UP round half up
1530 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1531 * For a canonical representation of the value, use {@link
1532 * BigDecimal#toString()}.
1533 *
1534 * </tbody>
1535 * </table>
1536 *
1537 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1538 * Long apply.
1539 *
1540 * <p> If the {@code '#'} flag is given, then the decimal separator will
1541 * always be present.
1542 *
1543 * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1544 * given is the same as for Float and Double.
1545 *
1546 * <p> The specification of <a href="#floatDWidth">width</a> and <a
1547 * href="#floatDPrec">precision</a> is the same as defined for Float and
1548 * Double.
1549 *
1550 * <h4><a id="ddt">Date/Time</a></h4>
1551 *
1552 * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1553 * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1554 *
1555 * <table class="striped">
1556 * <caption style="display:none">DTConv</caption>
1557 * <tbody>
1558 *
1559 * <tr><th scope="row" style="vertical-align:top"> {@code 't'}
1560 * <td style="vertical-align:top"> <code>'\u0074'</code>
1561 * <td> Prefix for date and time conversion characters.
1562 * <tr><th scope="row" style="vertical-align:top"> {@code 'T'}
1563 * <td style="vertical-align:top"> <code>'\u0054'</code>
1564 * <td> The upper-case variant of {@code 't'}.
1565 *
1566 * </tbody>
1567 * </table>
1568 *
1569 * <p> The following date and time conversion character suffixes are defined
1570 * for the {@code 't'} and {@code 'T'} conversions. The types are similar to
1571 * but not completely identical to those defined by GNU {@code date} and
1572 * POSIX {@code strftime(3c)}. Additional conversion types are provided to
1573 * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1574 * within the second).
1575 *
1576 * <p> The following conversion characters are used for formatting times:
1577 *
1578 * <table class="striped">
1579 * <caption style="display:none">time</caption>
1580 * <tbody>
1581 *
1582 * <tr><th scope="row" style="vertical-align:top"> {@code 'H'}
1583 * <td style="vertical-align:top"> <code>'\u0048'</code>
1584 * <td> Hour of the day for the 24-hour clock, formatted as two digits with
1585 * a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1586 * corresponds to midnight.
1587 *
1588 * <tr><th scope="row" style="vertical-align:top">{@code 'I'}
1589 * <td style="vertical-align:top"> <code>'\u0049'</code>
1590 * <td> Hour for the 12-hour clock, formatted as two digits with a leading
1591 * zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to
1592 * one o'clock (either morning or afternoon).
1593 *
1594 * <tr><th scope="row" style="vertical-align:top">{@code 'k'}
1595 * <td style="vertical-align:top"> <code>'\u006b'</code>
1596 * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1597 * {@code 0} corresponds to midnight.
1598 *
1599 * <tr><th scope="row" style="vertical-align:top">{@code 'l'}
1600 * <td style="vertical-align:top"> <code>'\u006c'</code>
1601 * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1}
1602 * corresponds to one o'clock (either morning or afternoon).
1603 *
1604 * <tr><th scope="row" style="vertical-align:top">{@code 'M'}
1605 * <td style="vertical-align:top"> <code>'\u004d'</code>
1606 * <td> Minute within the hour formatted as two digits with a leading zero
1607 * as necessary, i.e. {@code 00 - 59}.
1608 *
1609 * <tr><th scope="row" style="vertical-align:top">{@code 'S'}
1610 * <td style="vertical-align:top"> <code>'\u0053'</code>
1611 * <td> Seconds within the minute, formatted as two digits with a leading
1612 * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1613 * value required to support leap seconds).
1614 *
1615 * <tr><th scope="row" style="vertical-align:top">{@code 'L'}
1616 * <td style="vertical-align:top"> <code>'\u004c'</code>
1617 * <td> Millisecond within the second formatted as three digits with
1618 * leading zeros as necessary, i.e. {@code 000 - 999}.
1619 *
1620 * <tr><th scope="row" style="vertical-align:top">{@code 'N'}
1621 * <td style="vertical-align:top"> <code>'\u004e'</code>
1622 * <td> Nanosecond within the second, formatted as nine digits with leading
1623 * zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision
1624 * of this value is limited by the resolution of the underlying operating
1625 * system or hardware.
1626 *
1627 * <tr><th scope="row" style="vertical-align:top">{@code 'p'}
1628 * <td style="vertical-align:top"> <code>'\u0070'</code>
1629 * <td> Locale-specific {@linkplain
1630 * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1631 * in lower case, e.g."{@code am}" or "{@code pm}". Use of the
1632 * conversion prefix {@code 'T'} forces this output to upper case. (Note
1633 * that {@code 'p'} produces lower-case output. This is different from
1634 * GNU {@code date} and POSIX {@code strftime(3c)} which produce
1635 * upper-case output.)
1636 *
1637 * <tr><th scope="row" style="vertical-align:top">{@code 'z'}
1638 * <td style="vertical-align:top"> <code>'\u007a'</code>
1639 * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC 822</a>
1640 * style numeric time zone offset from GMT, e.g. {@code -0800}. This
1641 * value will be adjusted as necessary for Daylight Saving Time. For
1642 * {@code long}, {@link Long}, and {@link Date} the time zone used is
1643 * the {@linkplain TimeZone#getDefault() default time zone} for this
1644 * instance of the Java virtual machine.
1645 *
1646 * <tr><th scope="row" style="vertical-align:top">{@code 'Z'}
1647 * <td style="vertical-align:top"> <code>'\u005a'</code>
1648 * <td> A string representing the abbreviation for the time zone. This
1649 * value will be adjusted as necessary for Daylight Saving Time. For
1650 * {@code long}, {@link Long}, and {@link Date} the time zone used is
1651 * the {@linkplain TimeZone#getDefault() default time zone} for this
1652 * instance of the Java virtual machine. The Formatter's locale will
1653 * supersede the locale of the argument (if any).
1654 *
1655 * <tr><th scope="row" style="vertical-align:top">{@code 's'}
1656 * <td style="vertical-align:top"> <code>'\u0073'</code>
1657 * <td> Seconds since the beginning of the epoch starting at 1 January 1970
1658 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1659 * {@code Long.MAX_VALUE/1000}.
1660 *
1661 * <tr><th scope="row" style="vertical-align:top">{@code 'Q'}
1662 * <td style="vertical-align:top"> <code>'\u004f'</code>
1663 * <td> Milliseconds since the beginning of the epoch starting at 1 January
1664 * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1665 * {@code Long.MAX_VALUE}. The precision of this value is limited by
1666 * the resolution of the underlying operating system or hardware.
1667 *
1668 * </tbody>
1669 * </table>
1670 *
1671 * <p> The following conversion characters are used for formatting dates:
1672 *
1673 * <table class="striped">
1674 * <caption style="display:none">date</caption>
1675 * <tbody>
1676 *
1677 * <tr><th scope="row" style="vertical-align:top">{@code 'B'}
1678 * <td style="vertical-align:top"> <code>'\u0042'</code>
1679 * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1680 * full month name}, e.g. {@code "January"}, {@code "February"}.
1681 *
1682 * <tr><th scope="row" style="vertical-align:top">{@code 'b'}
1683 * <td style="vertical-align:top"> <code>'\u0062'</code>
1684 * <td> Locale-specific {@linkplain
1685 * java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1686 * e.g. {@code "Jan"}, {@code "Feb"}.
1687 *
1688 * <tr><th scope="row" style="vertical-align:top">{@code 'h'}
1689 * <td style="vertical-align:top"> <code>'\u0068'</code>
1690 * <td> Same as {@code 'b'}.
1691 *
1692 * <tr><th scope="row" style="vertical-align:top">{@code 'A'}
1693 * <td style="vertical-align:top"> <code>'\u0041'</code>
1694 * <td> Locale-specific full name of the {@linkplain
1695 * java.text.DateFormatSymbols#getWeekdays day of the week},
1696 * e.g. {@code "Sunday"}, {@code "Monday"}
1697 *
1698 * <tr><th scope="row" style="vertical-align:top">{@code 'a'}
1699 * <td style="vertical-align:top"> <code>'\u0061'</code>
1700 * <td> Locale-specific short name of the {@linkplain
1701 * java.text.DateFormatSymbols#getShortWeekdays day of the week},
1702 * e.g. {@code "Sun"}, {@code "Mon"}
1703 *
1704 * <tr><th scope="row" style="vertical-align:top">{@code 'C'}
1705 * <td style="vertical-align:top"> <code>'\u0043'</code>
1706 * <td> Four-digit year divided by {@code 100}, formatted as two digits
1707 * with leading zero as necessary, i.e. {@code 00 - 99}
1708 *
1709 * <tr><th scope="row" style="vertical-align:top">{@code 'Y'}
1710 * <td style="vertical-align:top"> <code>'\u0059'</code> <td> Year, formatted to at least
1711 * four digits with leading zeros as necessary, e.g. {@code 0092} equals
1712 * {@code 92} CE for the Gregorian calendar.
1713 *
1714 * <tr><th scope="row" style="vertical-align:top">{@code 'y'}
1715 * <td style="vertical-align:top"> <code>'\u0079'</code>
1716 * <td> Last two digits of the year, formatted with leading zeros as
1717 * necessary, i.e. {@code 00 - 99}.
1718 *
1719 * <tr><th scope="row" style="vertical-align:top">{@code 'j'}
1720 * <td style="vertical-align:top"> <code>'\u006a'</code>
1721 * <td> Day of year, formatted as three digits with leading zeros as
1722 * necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1723 * {@code 001} corresponds to the first day of the year.
1724 *
1725 * <tr><th scope="row" style="vertical-align:top">{@code 'm'}
1726 * <td style="vertical-align:top"> <code>'\u006d'</code>
1727 * <td> Month, formatted as two digits with leading zeros as necessary,
1728 * i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1729 * year and ("{@code 13}" is a special value required to support lunar
1730 * calendars).
1731 *
1732 * <tr><th scope="row" style="vertical-align:top">{@code 'd'}
1733 * <td style="vertical-align:top"> <code>'\u0064'</code>
1734 * <td> Day of month, formatted as two digits with leading zeros as
1735 * necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1736 * of the month.
1737 *
1738 * <tr><th scope="row" style="vertical-align:top">{@code 'e'}
1739 * <td style="vertical-align:top"> <code>'\u0065'</code>
1740 * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1741 * "{@code 1}" is the first day of the month.
1742 *
1743 * </tbody>
1744 * </table>
1745 *
1746 * <p> The following conversion characters are used for formatting common
1747 * date/time compositions.
1748 *
1749 * <table class="striped">
1750 * <caption style="display:none">composites</caption>
1751 * <tbody>
1752 *
1753 * <tr><th scope="row" style="vertical-align:top">{@code 'R'}
1754 * <td style="vertical-align:top"> <code>'\u0052'</code>
1755 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1756 *
1757 * <tr><th scope="row" style="vertical-align:top">{@code 'T'}
1758 * <td style="vertical-align:top"> <code>'\u0054'</code>
1759 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1760 *
1761 * <tr><th scope="row" style="vertical-align:top">{@code 'r'}
1762 * <td style="vertical-align:top"> <code>'\u0072'</code>
1763 * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1764 * %Tp"}. The location of the morning or afternoon marker
1765 * ({@code '%Tp'}) may be locale-dependent.
1766 *
1767 * <tr><th scope="row" style="vertical-align:top">{@code 'D'}
1768 * <td style="vertical-align:top"> <code>'\u0044'</code>
1769 * <td> Date formatted as {@code "%tm/%td/%ty"}.
1770 *
1771 * <tr><th scope="row" style="vertical-align:top">{@code 'F'}
1772 * <td style="vertical-align:top"> <code>'\u0046'</code>
1773 * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO 8601</a>
1774 * complete date formatted as {@code "%tY-%tm-%td"}.
1775 *
1776 * <tr><th scope="row" style="vertical-align:top">{@code 'c'}
1777 * <td style="vertical-align:top"> <code>'\u0063'</code>
1778 * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1779 * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1780 *
1781 * </tbody>
1782 * </table>
1783 *
1784 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1785 * conversions</a> applies. If the {@code '#'} flag is given, then a {@link
1786 * FormatFlagsConversionMismatchException} will be thrown.
1787 *
1788 * <p> The width is the minimum number of characters to
1789 * be written to the output. If the length of the converted value is less than
1790 * the {@code width} then the output will be padded by spaces
1791 * (<code>'\u0020'</code>) until the total number of characters equals width.
1792 * The padding is on the left by default. If the {@code '-'} flag is given
1793 * then the padding will be on the right. If width is not specified then there
1794 * is no minimum.
1795 *
1796 * <p> The precision is not applicable. If the precision is specified then an
1797 * {@link IllegalFormatPrecisionException} will be thrown.
1798 *
1799 * <h4><a id="dper">Percent</a></h4>
1800 *
1801 * <p> The conversion does not correspond to any argument.
1802 *
1803 * <table class="striped">
1804 * <caption style="display:none">DTConv</caption>
1805 * <tbody>
1806 *
1807 * <tr><th scope="row" style="vertical-align:top">{@code '%'}
1808 * <td> The result is a literal {@code '%'} (<code>'\u0025'</code>)
1809 *
1810 * <p> The width is the minimum number of characters to
1811 * be written to the output including the {@code '%'}. If the length of the
1812 * converted value is less than the {@code width} then the output will be
1813 * padded by spaces (<code>'\u0020'</code>) until the total number of
1814 * characters equals width. The padding is on the left. If width is not
1815 * specified then just the {@code '%'} is output.
1816 *
1817 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1818 * conversions</a> applies. If any other flags are provided, then a
1819 * {@link FormatFlagsConversionMismatchException} will be thrown.
1820 *
1821 * <p> The precision is not applicable. If the precision is specified an
1822 * {@link IllegalFormatPrecisionException} will be thrown.
1823 *
1824 * </tbody>
1825 * </table>
1826 *
1827 * <h4><a id="dls">Line Separator</a></h4>
1828 *
1829 * <p> The conversion does not correspond to any argument.
1830 *
1831 * <table class="striped">
1832 * <caption style="display:none">DTConv</caption>
1833 * <tbody>
1834 *
1835 * <tr><th scope="row" style="vertical-align:top">{@code 'n'}
1836 * <td> the platform-specific line separator as returned by {@link
1837 * System#lineSeparator()}.
1838 *
1839 * </tbody>
1840 * </table>
1841 *
1842 * <p> Flags, width, and precision are not applicable. If any are provided an
1843 * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1844 * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1845 *
1846 * <h4><a id="dpos">Argument Index</a></h4>
1847 *
1848 * <p> Format specifiers can reference arguments in three ways:
1849 *
1850 * <ul>
1851 *
1852 * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1853 * argument index. The argument index is a decimal integer indicating the
1854 * position of the argument in the argument list. The first argument is
1855 * referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument
1856 * may be referenced more than once.
1857 *
1858 * <p> For example:
1859 *
1860 * <blockquote><pre>
1861 * formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1862 * "a", "b", "c", "d")
1863 * // -> "d c b a d c b a"
1864 * </pre></blockquote>
1865 *
1866 * <li> <i>Relative indexing</i> is used when the format specifier contains a
1867 * {@code '<'} (<code>'\u003c'</code>) flag which causes the argument for
1868 * the previous format specifier to be re-used. If there is no previous
1869 * argument, then a {@link MissingFormatArgumentException} is thrown.
1870 *
1871 * <blockquote><pre>
1872 * formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
1873 * // -> "a b b b"
1874 * // "c" and "d" are ignored because they are not referenced
1875 * </pre></blockquote>
1876 *
1877 * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1878 * neither an argument index nor a {@code '<'} flag. Each format specifier
1879 * which uses ordinary indexing is assigned a sequential implicit index into
1880 * argument list which is independent of the indices used by explicit or
1881 * relative indexing.
1882 *
1883 * <blockquote><pre>
1884 * formatter.format("%s %s %s %s", "a", "b", "c", "d")
1885 * // -> "a b c d"
1886 * </pre></blockquote>
1887 *
1888 * </ul>
1889 *
1890 * <p> It is possible to have a format string which uses all forms of indexing,
1891 * for example:
1892 *
1893 * <blockquote><pre>
1894 * formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
1895 * // -> "b a a b"
1896 * // "c" and "d" are ignored because they are not referenced
1897 * </pre></blockquote>
1898 *
1899 * <p> The maximum number of arguments is limited by the maximum dimension of a
1900 * Java array as defined by
1901 * <cite>The Java™ Virtual Machine Specification</cite>.
1902 * If the argument index does not correspond to an
1903 * available argument, then a {@link MissingFormatArgumentException} is thrown.
1904 *
1905 * <p> If there are more arguments than format specifiers, the extra arguments
1906 * are ignored.
1907 *
1908 * <p> Unless otherwise specified, passing a {@code null} argument to any
1909 * method or constructor in this class will cause a {@link
1910 * NullPointerException} to be thrown.
1911 *
1912 * @author Iris Clark
1913 * @since 1.5
1914 */
1915 public final class Formatter implements Closeable, Flushable {
1916 private Appendable a;
1917 private final Locale l;
1918
1919 private IOException lastException;
1920
1921 private final char zero;
1922 private static double scaleUp;
1923
1924 // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1925 // + 3 (max # exp digits) + 4 (error) = 30
1926 private static final int MAX_FD_CHARS = 30;
1927
1928 /**
1929 * Returns a charset object for the given charset name.
1930 * @throws NullPointerException is csn is null
1931 * @throws UnsupportedEncodingException if the charset is not supported
1932 */
1933 private static Charset toCharset(String csn)
1934 throws UnsupportedEncodingException
1935 {
1936 Objects.requireNonNull(csn, "charsetName");
1937 try {
1938 return Charset.forName(csn);
1939 } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1940 // UnsupportedEncodingException should be thrown
1941 throw new UnsupportedEncodingException(csn);
1942 }
1943 }
1944
1945 private static final Appendable nonNullAppendable(Appendable a) {
1946 if (a == null)
1947 return new StringBuilder();
1948
1949 return a;
1950 }
1951
1952 /* Private constructors */
1953 private Formatter(Locale l, Appendable a) {
1954 this.a = a;
1955 this.l = l;
1956 this.zero = getZero(l);
1957 }
1958
1959 private Formatter(Charset charset, Locale l, File file)
1960 throws FileNotFoundException
1961 {
1962 this(l,
1963 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1964 }
1965
1966 /**
1967 * Constructs a new formatter.
1968 *
1969 * <p> The destination of the formatted output is a {@link StringBuilder}
1970 * which may be retrieved by invoking {@link #out out()} and whose
1971 * current content may be converted into a string by invoking {@link
1972 * #toString toString()}. The locale used is the {@linkplain
1973 * Locale#getDefault(Locale.Category) default locale} for
1974 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1975 * virtual machine.
1976 */
1977 public Formatter() {
1978 this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1979 }
1980
1981 /**
1982 * Constructs a new formatter with the specified destination.
1983 *
1984 * <p> The locale used is the {@linkplain
1985 * Locale#getDefault(Locale.Category) default locale} for
1986 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1987 * virtual machine.
1988 *
1989 * @param a
1990 * Destination for the formatted output. If {@code a} is
1991 * {@code null} then a {@link StringBuilder} will be created.
1992 */
1993 public Formatter(Appendable a) {
1994 this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1995 }
1996
1997 /**
1998 * Constructs a new formatter with the specified locale.
1999 *
2000 * <p> The destination of the formatted output is a {@link StringBuilder}
2001 * which may be retrieved by invoking {@link #out out()} and whose current
2002 * content may be converted into a string by invoking {@link #toString
2003 * toString()}.
2004 *
2005 * @param l
2006 * The {@linkplain java.util.Locale locale} to apply during
2007 * formatting. If {@code l} is {@code null} then no localization
2008 * is applied.
2009 */
2010 public Formatter(Locale l) {
2011 this(l, new StringBuilder());
2012 }
2013
2014 /**
2015 * Constructs a new formatter with the specified destination and locale.
2016 *
2017 * @param a
2018 * Destination for the formatted output. If {@code a} is
2019 * {@code null} then a {@link StringBuilder} will be created.
2020 *
2021 * @param l
2022 * The {@linkplain java.util.Locale locale} to apply during
2023 * formatting. If {@code l} is {@code null} then no localization
2024 * is applied.
2025 */
2026 public Formatter(Appendable a, Locale l) {
2027 this(l, nonNullAppendable(a));
2028 }
2029
2030 /**
2031 * Constructs a new formatter with the specified file name.
2032 *
2033 * <p> The charset used is the {@linkplain
2034 * java.nio.charset.Charset#defaultCharset() default charset} for this
2035 * instance of the Java virtual machine.
2036 *
2037 * <p> The locale used is the {@linkplain
2038 * Locale#getDefault(Locale.Category) default locale} for
2039 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2040 * virtual machine.
2041 *
2042 * @param fileName
2043 * The name of the file to use as the destination of this
2044 * formatter. If the file exists then it will be truncated to
2045 * zero size; otherwise, a new file will be created. The output
2046 * will be written to the file and is buffered.
2047 *
2048 * @throws SecurityException
2049 * If a security manager is present and {@link
2050 * SecurityManager#checkWrite checkWrite(fileName)} denies write
2051 * access to the file
2052 *
2053 * @throws FileNotFoundException
2054 * If the given file name does not denote an existing, writable
2055 * regular file and a new regular file of that name cannot be
2056 * created, or if some other error occurs while opening or
2057 * creating the file
2058 */
2059 public Formatter(String fileName) throws FileNotFoundException {
2060 this(Locale.getDefault(Locale.Category.FORMAT),
2061 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
2062 }
2063
2064 /**
2065 * Constructs a new formatter with the specified file name and charset.
2066 *
2067 * <p> The locale used is the {@linkplain
2068 * Locale#getDefault(Locale.Category) default locale} for
2069 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2070 * virtual machine.
2071 *
2072 * @param fileName
2073 * The name of the file to use as the destination of this
2074 * formatter. If the file exists then it will be truncated to
2075 * zero size; otherwise, a new file will be created. The output
2076 * will be written to the file and is buffered.
2077 *
2078 * @param csn
2079 * The name of a supported {@linkplain java.nio.charset.Charset
2080 * charset}
2081 *
2082 * @throws FileNotFoundException
2083 * If the given file name does not denote an existing, writable
2084 * regular file and a new regular file of that name cannot be
2085 * created, or if some other error occurs while opening or
2086 * creating the file
2087 *
2088 * @throws SecurityException
2089 * If a security manager is present and {@link
2090 * SecurityManager#checkWrite checkWrite(fileName)} denies write
2091 * access to the file
2092 *
2093 * @throws UnsupportedEncodingException
2094 * If the named charset is not supported
2095 */
2096 public Formatter(String fileName, String csn)
2097 throws FileNotFoundException, UnsupportedEncodingException
2098 {
2099 this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2100 }
2101
2102 /**
2103 * Constructs a new formatter with the specified file name, charset, and
2104 * locale.
2105 *
2106 * @param fileName
2107 * The name of the file to use as the destination of this
2108 * formatter. If the file exists then it will be truncated to
2109 * zero size; otherwise, a new file will be created. The output
2110 * will be written to the file and is buffered.
2111 *
2112 * @param csn
2113 * The name of a supported {@linkplain java.nio.charset.Charset
2114 * charset}
2115 *
2116 * @param l
2117 * The {@linkplain java.util.Locale locale} to apply during
2118 * formatting. If {@code l} is {@code null} then no localization
2119 * is applied.
2120 *
2121 * @throws FileNotFoundException
2122 * If the given file name does not denote an existing, writable
2123 * regular file and a new regular file of that name cannot be
2124 * created, or if some other error occurs while opening or
2125 * creating the file
2126 *
2127 * @throws SecurityException
2128 * If a security manager is present and {@link
2129 * SecurityManager#checkWrite checkWrite(fileName)} denies write
2130 * access to the file
2131 *
2132 * @throws UnsupportedEncodingException
2133 * If the named charset is not supported
2134 */
2135 public Formatter(String fileName, String csn, Locale l)
2136 throws FileNotFoundException, UnsupportedEncodingException
2137 {
2138 this(toCharset(csn), l, new File(fileName));
2139 }
2140
2141 /**
2142 * Constructs a new formatter with the specified file name, charset, and
2143 * locale.
2144 *
2145 * @param fileName
2146 * The name of the file to use as the destination of this
2147 * formatter. If the file exists then it will be truncated to
2148 * zero size; otherwise, a new file will be created. The output
2149 * will be written to the file and is buffered.
2150 *
2151 * @param charset
2152 * A {@linkplain java.nio.charset.Charset charset}
2153 *
2154 * @param l
2155 * The {@linkplain java.util.Locale locale} to apply during
2156 * formatting. If {@code l} is {@code null} then no localization
2157 * is applied.
2158 *
2159 * @throws IOException
2160 * if an I/O error occurs while opening or creating the file
2161 *
2162 * @throws SecurityException
2163 * If a security manager is present and {@link
2164 * SecurityManager#checkWrite checkWrite(fileName)} denies write
2165 * access to the file
2166 *
2167 * @throws NullPointerException
2168 * if {@code fileName} or {@code charset} is {@code null}.
2169 */
2170 public Formatter(String fileName, Charset charset, Locale l) throws IOException {
2171 this(Objects.requireNonNull(charset, "charset"), l, new File(fileName));
2172 }
2173
2174 /**
2175 * Constructs a new formatter with the specified file.
2176 *
2177 * <p> The charset used is the {@linkplain
2178 * java.nio.charset.Charset#defaultCharset() default charset} for this
2179 * instance of the Java virtual machine.
2180 *
2181 * <p> The locale used is the {@linkplain
2182 * Locale#getDefault(Locale.Category) default locale} for
2183 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2184 * virtual machine.
2185 *
2186 * @param file
2187 * The file to use as the destination of this formatter. If the
2188 * file exists then it will be truncated to zero size; otherwise,
2189 * a new file will be created. The output will be written to the
2190 * file and is buffered.
2191 *
2192 * @throws SecurityException
2193 * If a security manager is present and {@link
2194 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2195 * write access to the file
2196 *
2197 * @throws FileNotFoundException
2198 * If the given file object does not denote an existing, writable
2199 * regular file and a new regular file of that name cannot be
2200 * created, or if some other error occurs while opening or
2201 * creating the file
2202 */
2203 public Formatter(File file) throws FileNotFoundException {
2204 this(Locale.getDefault(Locale.Category.FORMAT),
2205 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2206 }
2207
2208 /**
2209 * Constructs a new formatter with the specified file and charset.
2210 *
2211 * <p> The locale used is the {@linkplain
2212 * Locale#getDefault(Locale.Category) default locale} for
2213 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2214 * virtual machine.
2215 *
2216 * @param file
2217 * The file to use as the destination of this formatter. If the
2218 * file exists then it will be truncated to zero size; otherwise,
2219 * a new file will be created. The output will be written to the
2220 * file and is buffered.
2221 *
2222 * @param csn
2223 * The name of a supported {@linkplain java.nio.charset.Charset
2224 * charset}
2225 *
2226 * @throws FileNotFoundException
2227 * If the given file object does not denote an existing, writable
2228 * regular file and a new regular file of that name cannot be
2229 * created, or if some other error occurs while opening or
2230 * creating the file
2231 *
2232 * @throws SecurityException
2233 * If a security manager is present and {@link
2234 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2235 * write access to the file
2236 *
2237 * @throws UnsupportedEncodingException
2238 * If the named charset is not supported
2239 */
2240 public Formatter(File file, String csn)
2241 throws FileNotFoundException, UnsupportedEncodingException
2242 {
2243 this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2244 }
2245
2246 /**
2247 * Constructs a new formatter with the specified file, charset, and
2248 * locale.
2249 *
2250 * @param file
2251 * The file to use as the destination of this formatter. If the
2252 * file exists then it will be truncated to zero size; otherwise,
2253 * a new file will be created. The output will be written to the
2254 * file and is buffered.
2255 *
2256 * @param csn
2257 * The name of a supported {@linkplain java.nio.charset.Charset
2258 * charset}
2259 *
2260 * @param l
2261 * The {@linkplain java.util.Locale locale} to apply during
2262 * formatting. If {@code l} is {@code null} then no localization
2263 * is applied.
2264 *
2265 * @throws FileNotFoundException
2266 * If the given file object does not denote an existing, writable
2267 * regular file and a new regular file of that name cannot be
2268 * created, or if some other error occurs while opening or
2269 * creating the file
2270 *
2271 * @throws SecurityException
2272 * If a security manager is present and {@link
2273 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2274 * write access to the file
2275 *
2276 * @throws UnsupportedEncodingException
2277 * If the named charset is not supported
2278 */
2279 public Formatter(File file, String csn, Locale l)
2280 throws FileNotFoundException, UnsupportedEncodingException
2281 {
2282 this(toCharset(csn), l, file);
2283 }
2284
2285 /**
2286 * Constructs a new formatter with the specified file, charset, and
2287 * locale.
2288 *
2289 * @param file
2290 * The file to use as the destination of this formatter. If the
2291 * file exists then it will be truncated to zero size; otherwise,
2292 * a new file will be created. The output will be written to the
2293 * file and is buffered.
2294 *
2295 * @param charset
2296 * A {@linkplain java.nio.charset.Charset charset}
2297 *
2298 * @param l
2299 * The {@linkplain java.util.Locale locale} to apply during
2300 * formatting. If {@code l} is {@code null} then no localization
2301 * is applied.
2302 *
2303 * @throws IOException
2304 * if an I/O error occurs while opening or creating the file
2305 *
2306 * @throws SecurityException
2307 * If a security manager is present and {@link
2308 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2309 * write access to the file
2310 *
2311 * @throws NullPointerException
2312 * if {@code file} or {@code charset} is {@code null}.
2313 */
2314 public Formatter(File file, Charset charset, Locale l) throws IOException {
2315 this(Objects.requireNonNull(charset, "charset"), l, file);
2316 }
2317
2318
2319 /**
2320 * Constructs a new formatter with the specified print stream.
2321 *
2322 * <p> The locale used is the {@linkplain
2323 * Locale#getDefault(Locale.Category) default locale} for
2324 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2325 * virtual machine.
2326 *
2327 * <p> Characters are written to the given {@link java.io.PrintStream
2328 * PrintStream} object and are therefore encoded using that object's
2329 * charset.
2330 *
2331 * @param ps
2332 * The stream to use as the destination of this formatter.
2333 */
2334 public Formatter(PrintStream ps) {
2335 this(Locale.getDefault(Locale.Category.FORMAT),
2336 (Appendable)Objects.requireNonNull(ps));
2337 }
2338
2339 /**
2340 * Constructs a new formatter with the specified output stream.
2341 *
2342 * <p> The charset used is the {@linkplain
2343 * java.nio.charset.Charset#defaultCharset() default charset} for this
2344 * instance of the Java virtual machine.
2345 *
2346 * <p> The locale used is the {@linkplain
2347 * Locale#getDefault(Locale.Category) default locale} for
2348 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2349 * virtual machine.
2350 *
2351 * @param os
2352 * The output stream to use as the destination of this formatter.
2353 * The output will be buffered.
2354 */
2355 public Formatter(OutputStream os) {
2356 this(Locale.getDefault(Locale.Category.FORMAT),
2357 new BufferedWriter(new OutputStreamWriter(os)));
2358 }
2359
2360 /**
2361 * Constructs a new formatter with the specified output stream and
2362 * charset.
2363 *
2364 * <p> The locale used is the {@linkplain
2365 * Locale#getDefault(Locale.Category) default locale} for
2366 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2367 * virtual machine.
2368 *
2369 * @param os
2370 * The output stream to use as the destination of this formatter.
2371 * The output will be buffered.
2372 *
2373 * @param csn
2374 * The name of a supported {@linkplain java.nio.charset.Charset
2375 * charset}
2376 *
2377 * @throws UnsupportedEncodingException
2378 * If the named charset is not supported
2379 */
2380 public Formatter(OutputStream os, String csn)
2381 throws UnsupportedEncodingException
2382 {
2383 this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2384 }
2385
2386 /**
2387 * Constructs a new formatter with the specified output stream, charset,
2388 * and locale.
2389 *
2390 * @param os
2391 * The output stream to use as the destination of this formatter.
2392 * The output will be buffered.
2393 *
2394 * @param csn
2395 * The name of a supported {@linkplain java.nio.charset.Charset
2396 * charset}
2397 *
2398 * @param l
2399 * The {@linkplain java.util.Locale locale} to apply during
2400 * formatting. If {@code l} is {@code null} then no localization
2401 * is applied.
2402 *
2403 * @throws UnsupportedEncodingException
2404 * If the named charset is not supported
2405 */
2406 public Formatter(OutputStream os, String csn, Locale l)
2407 throws UnsupportedEncodingException
2408 {
2409 this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2410 }
2411
2412 /**
2413 * Constructs a new formatter with the specified output stream, charset,
2414 * and locale.
2415 *
2416 * @param os
2417 * The output stream to use as the destination of this formatter.
2418 * The output will be buffered.
2419 *
2420 * @param charset
2421 * A {@linkplain java.nio.charset.Charset charset}
2422 *
2423 * @param l
2424 * The {@linkplain java.util.Locale locale} to apply during
2425 * formatting. If {@code l} is {@code null} then no localization
2426 * is applied.
2427 *
2428 * @throws NullPointerException
2429 * if {@code os} or {@code charset} is {@code null}.
2430 */
2431 public Formatter(OutputStream os, Charset charset, Locale l) {
2432 this(l, new BufferedWriter(new OutputStreamWriter(os, charset)));
2433 }
2434
2435 private static char getZero(Locale l) {
2436 if ((l != null) && !l.equals(Locale.US)) {
2437 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2438 return dfs.getZeroDigit();
2439 } else {
2440 return '0';
2441 }
2442 }
2443
2444 /**
2445 * Returns the locale set by the construction of this formatter.
2446 *
2447 * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2448 * for this object which has a locale argument does not change this value.
2449 *
2450 * @return {@code null} if no localization is applied, otherwise a
2451 * locale
2452 *
2453 * @throws FormatterClosedException
2454 * If this formatter has been closed by invoking its {@link
2455 * #close()} method
2456 */
2457 public Locale locale() {
2458 ensureOpen();
2459 return l;
2460 }
2461
2462 /**
2463 * Returns the destination for the output.
2464 *
2465 * @return The destination for the output
2466 *
2467 * @throws FormatterClosedException
2468 * If this formatter has been closed by invoking its {@link
2469 * #close()} method
2470 */
2471 public Appendable out() {
2472 ensureOpen();
2473 return a;
2474 }
2475
2476 /**
2477 * Returns the result of invoking {@code toString()} on the destination
2478 * for the output. For example, the following code formats text into a
2479 * {@link StringBuilder} then retrieves the resultant string:
2480 *
2481 * <blockquote><pre>
2482 * Formatter f = new Formatter();
2483 * f.format("Last reboot at %tc", lastRebootDate);
2484 * String s = f.toString();
2485 * // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2486 * </pre></blockquote>
2487 *
2488 * <p> An invocation of this method behaves in exactly the same way as the
2489 * invocation
2490 *
2491 * <pre>
2492 * out().toString() </pre>
2493 *
2494 * <p> Depending on the specification of {@code toString} for the {@link
2495 * Appendable}, the returned string may or may not contain the characters
2496 * written to the destination. For instance, buffers typically return
2497 * their contents in {@code toString()}, but streams cannot since the
2498 * data is discarded.
2499 *
2500 * @return The result of invoking {@code toString()} on the destination
2501 * for the output
2502 *
2503 * @throws FormatterClosedException
2504 * If this formatter has been closed by invoking its {@link
2505 * #close()} method
2506 */
2507 public String toString() {
2508 ensureOpen();
2509 return a.toString();
2510 }
2511
2512 /**
2513 * Flushes this formatter. If the destination implements the {@link
2514 * java.io.Flushable} interface, its {@code flush} method will be invoked.
2515 *
2516 * <p> Flushing a formatter writes any buffered output in the destination
2517 * to the underlying stream.
2518 *
2519 * @throws FormatterClosedException
2520 * If this formatter has been closed by invoking its {@link
2521 * #close()} method
2522 */
2523 public void flush() {
2524 ensureOpen();
2525 if (a instanceof Flushable) {
2526 try {
2527 ((Flushable)a).flush();
2528 } catch (IOException ioe) {
2529 lastException = ioe;
2530 }
2531 }
2532 }
2533
2534 /**
2535 * Closes this formatter. If the destination implements the {@link
2536 * java.io.Closeable} interface, its {@code close} method will be invoked.
2537 *
2538 * <p> Closing a formatter allows it to release resources it may be holding
2539 * (such as open files). If the formatter is already closed, then invoking
2540 * this method has no effect.
2541 *
2542 * <p> Attempting to invoke any methods except {@link #ioException()} in
2543 * this formatter after it has been closed will result in a {@link
2544 * FormatterClosedException}.
2545 */
2546 public void close() {
2547 if (a == null)
2548 return;
2549 try {
2550 if (a instanceof Closeable)
2551 ((Closeable)a).close();
2552 } catch (IOException ioe) {
2553 lastException = ioe;
2554 } finally {
2555 a = null;
2556 }
2557 }
2558
2559 private void ensureOpen() {
2560 if (a == null)
2561 throw new FormatterClosedException();
2562 }
2563
2564 /**
2565 * Returns the {@code IOException} last thrown by this formatter's {@link
2566 * Appendable}.
2567 *
2568 * <p> If the destination's {@code append()} method never throws
2569 * {@code IOException}, then this method will always return {@code null}.
2570 *
2571 * @return The last exception thrown by the Appendable or {@code null} if
2572 * no such exception exists.
2573 */
2574 public IOException ioException() {
2575 return lastException;
2576 }
2577
2578 /**
2579 * Writes a formatted string to this object's destination using the
2580 * specified format string and arguments. The locale used is the one
2581 * defined during the construction of this formatter.
2582 *
2583 * @param format
2584 * A format string as described in <a href="#syntax">Format string
2585 * syntax</a>.
2586 *
2587 * @param args
2588 * Arguments referenced by the format specifiers in the format
2589 * string. If there are more arguments than format specifiers, the
2590 * extra arguments are ignored. The maximum number of arguments is
2591 * limited by the maximum dimension of a Java array as defined by
2592 * <cite>The Java™ Virtual Machine Specification</cite>.
2593 *
2594 * @throws IllegalFormatException
2595 * If a format string contains an illegal syntax, a format
2596 * specifier that is incompatible with the given arguments,
2597 * insufficient arguments given the format string, or other
2598 * illegal conditions. For specification of all possible
2599 * formatting errors, see the <a href="#detail">Details</a>
2600 * section of the formatter class specification.
2601 *
2602 * @throws FormatterClosedException
2603 * If this formatter has been closed by invoking its {@link
2604 * #close()} method
2605 *
2606 * @return This formatter
2607 */
2608 public Formatter format(String format, Object ... args) {
2609 return format(l, format, args);
2610 }
2611
2612 /**
2613 * Writes a formatted string to this object's destination using the
2614 * specified locale, format string, and arguments.
2615 *
2616 * @param l
2617 * The {@linkplain java.util.Locale locale} to apply during
2618 * formatting. If {@code l} is {@code null} then no localization
2619 * is applied. This does not change this object's locale that was
2620 * set during construction.
2621 *
2622 * @param format
2623 * A format string as described in <a href="#syntax">Format string
2624 * syntax</a>
2625 *
2626 * @param args
2627 * Arguments referenced by the format specifiers in the format
2628 * string. If there are more arguments than format specifiers, the
2629 * extra arguments are ignored. The maximum number of arguments is
2630 * limited by the maximum dimension of a Java array as defined by
2631 * <cite>The Java™ Virtual Machine Specification</cite>.
2632 *
2633 * @throws IllegalFormatException
2634 * If a format string contains an illegal syntax, a format
2635 * specifier that is incompatible with the given arguments,
2636 * insufficient arguments given the format string, or other
2637 * illegal conditions. For specification of all possible
2638 * formatting errors, see the <a href="#detail">Details</a>
2639 * section of the formatter class specification.
2640 *
2641 * @throws FormatterClosedException
2642 * If this formatter has been closed by invoking its {@link
2643 * #close()} method
2644 *
2645 * @return This formatter
2646 */
2647 public Formatter format(Locale l, String format, Object ... args) {
2648 ensureOpen();
2649
2650 // index of last argument referenced
2651 int last = -1;
2652 // last ordinary index
2653 int lasto = -1;
2654
2655 List<FormatString> fsa = parse(format);
2656 for (FormatString fs : fsa) {
2657 int index = fs.index();
2658 try {
2659 switch (index) {
2660 case -2: // fixed string, "%n", or "%%"
2661 fs.print(null, l);
2662 break;
2663 case -1: // relative index
2664 if (last < 0 || (args != null && last > args.length - 1))
2665 throw new MissingFormatArgumentException(fs.toString());
2666 fs.print((args == null ? null : args[last]), l);
2667 break;
2668 case 0: // ordinary index
2669 lasto++;
2670 last = lasto;
2671 if (args != null && lasto > args.length - 1)
2672 throw new MissingFormatArgumentException(fs.toString());
2673 fs.print((args == null ? null : args[lasto]), l);
2674 break;
2675 default: // explicit index
2676 last = index - 1;
2677 if (args != null && last > args.length - 1)
2678 throw new MissingFormatArgumentException(fs.toString());
2679 fs.print((args == null ? null : args[last]), l);
2680 break;
2681 }
2682 } catch (IOException x) {
2683 lastException = x;
2684 }
2685 }
2686 return this;
2687 }
2688
2689 // %[argument_index$][flags][width][.precision][t]conversion
2690 private static final String formatSpecifier
2691 = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2692
2693 private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2694
2695 /**
2696 * Finds format specifiers in the format string.
2697 */
2698 private List<FormatString> parse(String s) {
2699 ArrayList<FormatString> al = new ArrayList<>();
2700 Matcher m = fsPattern.matcher(s);
2701 for (int i = 0, len = s.length(); i < len; ) {
2702 if (m.find(i)) {
2703 // Anything between the start of the string and the beginning
2704 // of the format specifier is either fixed text or contains
2705 // an invalid format string.
2706 if (m.start() != i) {
2707 // Make sure we didn't miss any invalid format specifiers
2708 checkText(s, i, m.start());
2709 // Assume previous characters were fixed text
2710 al.add(new FixedString(s, i, m.start()));
2711 }
2712
2713 al.add(new FormatSpecifier(s, m));
2714 i = m.end();
2715 } else {
2716 // No more valid format specifiers. Check for possible invalid
2717 // format specifiers.
2718 checkText(s, i, len);
2719 // The rest of the string is fixed text
2720 al.add(new FixedString(s, i, s.length()));
2721 break;
2722 }
2723 }
2724 return al;
2725 }
2726
2727 private static void checkText(String s, int start, int end) {
2728 for (int i = start; i < end; i++) {
2729 // Any '%' found in the region starts an invalid format specifier.
2730 if (s.charAt(i) == '%') {
2731 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2732 throw new UnknownFormatConversionException(String.valueOf(c));
2733 }
2734 }
2735 }
2736
2737 private interface FormatString {
2738 int index();
2739 void print(Object arg, Locale l) throws IOException;
2740 String toString();
2741 }
2742
2743 private class FixedString implements FormatString {
2744 private String s;
2745 private int start;
2746 private int end;
2747 FixedString(String s, int start, int end) {
2748 this.s = s;
2749 this.start = start;
2750 this.end = end;
2751 }
2752 public int index() { return -2; }
2753 public void print(Object arg, Locale l)
2754 throws IOException { a.append(s, start, end); }
2755 public String toString() { return s.substring(start, end); }
2756 }
2757
2758 /**
2759 * Enum for {@code BigDecimal} formatting.
2760 */
2761 public enum BigDecimalLayoutForm {
2762 /**
2763 * Format the {@code BigDecimal} in computerized scientific notation.
2764 */
2765 SCIENTIFIC,
2766
2767 /**
2768 * Format the {@code BigDecimal} as a decimal number.
2769 */
2770 DECIMAL_FLOAT
2771 };
2772
2773 private class FormatSpecifier implements FormatString {
2774 private int index = -1;
2775 private Flags f = Flags.NONE;
2776 private int width;
2777 private int precision;
2778 private boolean dt = false;
2779 private char c;
2780
2781 private int index(String s, int start, int end) {
2782 if (start >= 0) {
2783 try {
2784 // skip the trailing '$'
2785 index = Integer.parseInt(s, start, end - 1, 10);
2786 } catch (NumberFormatException x) {
2787 assert(false);
2788 }
2789 } else {
2790 index = 0;
2791 }
2792 return index;
2793 }
2794
2795 public int index() {
2796 return index;
2797 }
2798
2799 private Flags flags(String s, int start, int end) {
2800 f = Flags.parse(s, start, end);
2801 if (f.contains(Flags.PREVIOUS))
2802 index = -1;
2803 return f;
2804 }
2805
2806 private int width(String s, int start, int end) {
2807 width = -1;
2808 if (start >= 0) {
2809 try {
2810 width = Integer.parseInt(s, start, end, 10);
2811 if (width < 0)
2812 throw new IllegalFormatWidthException(width);
2813 } catch (NumberFormatException x) {
2814 assert(false);
2815 }
2816 }
2817 return width;
2818 }
2819
2820 private int precision(String s, int start, int end) {
2821 precision = -1;
2822 if (start >= 0) {
2823 try {
2824 // skip the leading '.'
2825 precision = Integer.parseInt(s, start + 1, end, 10);
2826 if (precision < 0)
2827 throw new IllegalFormatPrecisionException(precision);
2828 } catch (NumberFormatException x) {
2829 assert(false);
2830 }
2831 }
2832 return precision;
2833 }
2834
2835 private char conversion(char conv) {
2836 c = conv;
2837 if (!dt) {
2838 if (!Conversion.isValid(c)) {
2839 throw new UnknownFormatConversionException(String.valueOf(c));
2840 }
2841 if (Character.isUpperCase(c)) {
2842 f.add(Flags.UPPERCASE);
2843 c = Character.toLowerCase(c);
2844 }
2845 if (Conversion.isText(c)) {
2846 index = -2;
2847 }
2848 }
2849 return c;
2850 }
2851
2852 FormatSpecifier(String s, Matcher m) {
2853 index(s, m.start(1), m.end(1));
2854 flags(s, m.start(2), m.end(2));
2855 width(s, m.start(3), m.end(3));
2856 precision(s, m.start(4), m.end(4));
2857
2858 int tTStart = m.start(5);
2859 if (tTStart >= 0) {
2860 dt = true;
2861 if (s.charAt(tTStart) == 'T') {
2862 f.add(Flags.UPPERCASE);
2863 }
2864 }
2865 conversion(s.charAt(m.start(6)));
2866
2867 if (dt)
2868 checkDateTime();
2869 else if (Conversion.isGeneral(c))
2870 checkGeneral();
2871 else if (Conversion.isCharacter(c))
2872 checkCharacter();
2873 else if (Conversion.isInteger(c))
2874 checkInteger();
2875 else if (Conversion.isFloat(c))
2876 checkFloat();
2877 else if (Conversion.isText(c))
2878 checkText();
2879 else
2880 throw new UnknownFormatConversionException(String.valueOf(c));
2881 }
2882
2883 public void print(Object arg, Locale l) throws IOException {
2884 if (dt) {
2885 printDateTime(arg, l);
2886 return;
2887 }
2888 switch(c) {
2889 case Conversion.DECIMAL_INTEGER:
2890 case Conversion.OCTAL_INTEGER:
2891 case Conversion.HEXADECIMAL_INTEGER:
2892 printInteger(arg, l);
2893 break;
2894 case Conversion.SCIENTIFIC:
2895 case Conversion.GENERAL:
2896 case Conversion.DECIMAL_FLOAT:
2897 case Conversion.HEXADECIMAL_FLOAT:
2898 printFloat(arg, l);
2899 break;
2900 case Conversion.CHARACTER:
2901 case Conversion.CHARACTER_UPPER:
2902 printCharacter(arg, l);
2903 break;
2904 case Conversion.BOOLEAN:
2905 printBoolean(arg, l);
2906 break;
2907 case Conversion.STRING:
2908 printString(arg, l);
2909 break;
2910 case Conversion.HASHCODE:
2911 printHashCode(arg, l);
2912 break;
2913 case Conversion.LINE_SEPARATOR:
2914 a.append(System.lineSeparator());
2915 break;
2916 case Conversion.PERCENT_SIGN:
2917 print("%", l);
2918 break;
2919 default:
2920 assert false;
2921 }
2922 }
2923
2924 private void printInteger(Object arg, Locale l) throws IOException {
2925 if (arg == null)
2926 print("null", l);
2927 else if (arg instanceof Byte)
2928 print(((Byte)arg).byteValue(), l);
2929 else if (arg instanceof Short)
2930 print(((Short)arg).shortValue(), l);
2931 else if (arg instanceof Integer)
2932 print(((Integer)arg).intValue(), l);
2933 else if (arg instanceof Long)
2934 print(((Long)arg).longValue(), l);
2935 else if (arg instanceof BigInteger)
2936 print(((BigInteger)arg), l);
2937 else
2938 failConversion(c, arg);
2939 }
2940
2941 private void printFloat(Object arg, Locale l) throws IOException {
2942 if (arg == null)
2943 print("null", l);
2944 else if (arg instanceof Float)
2945 print(((Float)arg).floatValue(), l);
2946 else if (arg instanceof Double)
2947 print(((Double)arg).doubleValue(), l);
2948 else if (arg instanceof BigDecimal)
2949 print(((BigDecimal)arg), l);
2950 else
2951 failConversion(c, arg);
2952 }
2953
2954 private void printDateTime(Object arg, Locale l) throws IOException {
2955 if (arg == null) {
2956 print("null", l);
2957 return;
2958 }
2959 Calendar cal = null;
2960
2961 // Instead of Calendar.setLenient(true), perhaps we should
2962 // wrap the IllegalArgumentException that might be thrown?
2963 if (arg instanceof Long) {
2964 // Note that the following method uses an instance of the
2965 // default time zone (TimeZone.getDefaultRef().
2966 cal = Calendar.getInstance(l == null ? Locale.US : l);
2967 cal.setTimeInMillis((Long)arg);
2968 } else if (arg instanceof Date) {
2969 // Note that the following method uses an instance of the
2970 // default time zone (TimeZone.getDefaultRef().
2971 cal = Calendar.getInstance(l == null ? Locale.US : l);
2972 cal.setTime((Date)arg);
2973 } else if (arg instanceof Calendar) {
2974 cal = (Calendar) ((Calendar) arg).clone();
2975 cal.setLenient(true);
2976 } else if (arg instanceof TemporalAccessor) {
2977 print((TemporalAccessor) arg, c, l);
2978 return;
2979 } else {
2980 failConversion(c, arg);
2981 }
2982 // Use the provided locale so that invocations of
2983 // localizedMagnitude() use optimizations for null.
2984 print(cal, c, l);
2985 }
2986
2987 private void printCharacter(Object arg, Locale l) throws IOException {
2988 if (arg == null) {
2989 print("null", l);
2990 return;
2991 }
2992 String s = null;
2993 if (arg instanceof Character) {
2994 s = ((Character)arg).toString();
2995 } else if (arg instanceof Byte) {
2996 byte i = ((Byte)arg).byteValue();
2997 if (Character.isValidCodePoint(i))
2998 s = new String(Character.toChars(i));
2999 else
3000 throw new IllegalFormatCodePointException(i);
3001 } else if (arg instanceof Short) {
3002 short i = ((Short)arg).shortValue();
3003 if (Character.isValidCodePoint(i))
3004 s = new String(Character.toChars(i));
3005 else
3006 throw new IllegalFormatCodePointException(i);
3007 } else if (arg instanceof Integer) {
3008 int i = ((Integer)arg).intValue();
3009 if (Character.isValidCodePoint(i))
3010 s = new String(Character.toChars(i));
3011 else
3012 throw new IllegalFormatCodePointException(i);
3013 } else {
3014 failConversion(c, arg);
3015 }
3016 print(s, l);
3017 }
3018
3019 private void printString(Object arg, Locale l) throws IOException {
3020 if (arg instanceof Formattable) {
3021 Formatter fmt = Formatter.this;
3022 if (fmt.locale() != l)
3023 fmt = new Formatter(fmt.out(), l);
3024 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
3025 } else {
3026 if (f.contains(Flags.ALTERNATE))
3027 failMismatch(Flags.ALTERNATE, 's');
3028 if (arg == null)
3029 print("null", l);
3030 else
3031 print(arg.toString(), l);
3032 }
3033 }
3034
3035 private void printBoolean(Object arg, Locale l) throws IOException {
3036 String s;
3037 if (arg != null)
3038 s = ((arg instanceof Boolean)
3039 ? ((Boolean)arg).toString()
3040 : Boolean.toString(true));
3041 else
3042 s = Boolean.toString(false);
3043 print(s, l);
3044 }
3045
3046 private void printHashCode(Object arg, Locale l) throws IOException {
3047 String s = (arg == null
3048 ? "null"
3049 : Integer.toHexString(arg.hashCode()));
3050 print(s, l);
3051 }
3052
3053 private void print(String s, Locale l) throws IOException {
3054 if (precision != -1 && precision < s.length())
3055 s = s.substring(0, precision);
3056 if (f.contains(Flags.UPPERCASE))
3057 s = toUpperCaseWithLocale(s, l);
3058 appendJustified(a, s);
3059 }
3060
3061 private String toUpperCaseWithLocale(String s, Locale l) {
3062 return s.toUpperCase(Objects.requireNonNullElse(l,
3063 Locale.getDefault(Locale.Category.FORMAT)));
3064 }
3065
3066 private Appendable appendJustified(Appendable a, CharSequence cs) throws IOException {
3067 if (width == -1) {
3068 return a.append(cs);
3069 }
3070 boolean padRight = f.contains(Flags.LEFT_JUSTIFY);
3071 int sp = width - cs.length();
3072 if (padRight) {
3073 a.append(cs);
3074 }
3075 for (int i = 0; i < sp; i++) {
3076 a.append(' ');
3077 }
3078 if (!padRight) {
3079 a.append(cs);
3080 }
3081 return a;
3082 }
3083
3084 public String toString() {
3085 StringBuilder sb = new StringBuilder("%");
3086 // Flags.UPPERCASE is set internally for legal conversions.
3087 Flags dupf = f.dup().remove(Flags.UPPERCASE);
3088 sb.append(dupf.toString());
3089 if (index > 0)
3090 sb.append(index).append('$');
3091 if (width != -1)
3092 sb.append(width);
3093 if (precision != -1)
3094 sb.append('.').append(precision);
3095 if (dt)
3096 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
3097 sb.append(f.contains(Flags.UPPERCASE)
3098 ? Character.toUpperCase(c) : c);
3099 return sb.toString();
3100 }
3101
3102 private void checkGeneral() {
3103 if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
3104 && f.contains(Flags.ALTERNATE))
3105 failMismatch(Flags.ALTERNATE, c);
3106 // '-' requires a width
3107 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3108 throw new MissingFormatWidthException(toString());
3109 checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
3110 Flags.GROUP, Flags.PARENTHESES);
3111 }
3112
3113 private void checkDateTime() {
3114 if (precision != -1)
3115 throw new IllegalFormatPrecisionException(precision);
3116 if (!DateTime.isValid(c))
3117 throw new UnknownFormatConversionException("t" + c);
3118 checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3119 Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3120 // '-' requires a width
3121 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3122 throw new MissingFormatWidthException(toString());
3123 }
3124
3125 private void checkCharacter() {
3126 if (precision != -1)
3127 throw new IllegalFormatPrecisionException(precision);
3128 checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3129 Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3130 // '-' requires a width
3131 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3132 throw new MissingFormatWidthException(toString());
3133 }
3134
3135 private void checkInteger() {
3136 checkNumeric();
3137 if (precision != -1)
3138 throw new IllegalFormatPrecisionException(precision);
3139
3140 if (c == Conversion.DECIMAL_INTEGER)
3141 checkBadFlags(Flags.ALTERNATE);
3142 else if (c == Conversion.OCTAL_INTEGER)
3143 checkBadFlags(Flags.GROUP);
3144 else
3145 checkBadFlags(Flags.GROUP);
3146 }
3147
3148 private void checkBadFlags(Flags ... badFlags) {
3149 for (Flags badFlag : badFlags)
3150 if (f.contains(badFlag))
3151 failMismatch(badFlag, c);
3152 }
3153
3154 private void checkFloat() {
3155 checkNumeric();
3156 if (c == Conversion.DECIMAL_FLOAT) {
3157 } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3158 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3159 } else if (c == Conversion.SCIENTIFIC) {
3160 checkBadFlags(Flags.GROUP);
3161 } else if (c == Conversion.GENERAL) {
3162 checkBadFlags(Flags.ALTERNATE);
3163 }
3164 }
3165
3166 private void checkNumeric() {
3167 if (width != -1 && width < 0)
3168 throw new IllegalFormatWidthException(width);
3169
3170 if (precision != -1 && precision < 0)
3171 throw new IllegalFormatPrecisionException(precision);
3172
3173 // '-' and '0' require a width
3174 if (width == -1
3175 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3176 throw new MissingFormatWidthException(toString());
3177
3178 // bad combination
3179 if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3180 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3181 throw new IllegalFormatFlagsException(f.toString());
3182 }
3183
3184 private void checkText() {
3185 if (precision != -1)
3186 throw new IllegalFormatPrecisionException(precision);
3187 switch (c) {
3188 case Conversion.PERCENT_SIGN:
3189 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3190 && f.valueOf() != Flags.NONE.valueOf())
3191 throw new IllegalFormatFlagsException(f.toString());
3192 // '-' requires a width
3193 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3194 throw new MissingFormatWidthException(toString());
3195 break;
3196 case Conversion.LINE_SEPARATOR:
3197 if (width != -1)
3198 throw new IllegalFormatWidthException(width);
3199 if (f.valueOf() != Flags.NONE.valueOf())
3200 throw new IllegalFormatFlagsException(f.toString());
3201 break;
3202 default:
3203 assert false;
3204 }
3205 }
3206
3207 private void print(byte value, Locale l) throws IOException {
3208 long v = value;
3209 if (value < 0
3210 && (c == Conversion.OCTAL_INTEGER
3211 || c == Conversion.HEXADECIMAL_INTEGER)) {
3212 v += (1L << 8);
3213 assert v >= 0 : v;
3214 }
3215 print(v, l);
3216 }
3217
3218 private void print(short value, Locale l) throws IOException {
3219 long v = value;
3220 if (value < 0
3221 && (c == Conversion.OCTAL_INTEGER
3222 || c == Conversion.HEXADECIMAL_INTEGER)) {
3223 v += (1L << 16);
3224 assert v >= 0 : v;
3225 }
3226 print(v, l);
3227 }
3228
3229 private void print(int value, Locale l) throws IOException {
3230 long v = value;
3231 if (value < 0
3232 && (c == Conversion.OCTAL_INTEGER
3233 || c == Conversion.HEXADECIMAL_INTEGER)) {
3234 v += (1L << 32);
3235 assert v >= 0 : v;
3236 }
3237 print(v, l);
3238 }
3239
3240 private void print(long value, Locale l) throws IOException {
3241
3242 StringBuilder sb = new StringBuilder();
3243
3244 if (c == Conversion.DECIMAL_INTEGER) {
3245 boolean neg = value < 0;
3246 String valueStr = Long.toString(value, 10);
3247
3248 // leading sign indicator
3249 leadingSign(sb, neg);
3250
3251 // the value
3252 localizedMagnitude(sb, valueStr, neg ? 1 : 0, f, adjustWidth(width, f, neg), l);
3253
3254 // trailing sign indicator
3255 trailingSign(sb, neg);
3256 } else if (c == Conversion.OCTAL_INTEGER) {
3257 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3258 Flags.PLUS);
3259 String s = Long.toOctalString(value);
3260 int len = (f.contains(Flags.ALTERNATE)
3261 ? s.length() + 1
3262 : s.length());
3263
3264 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3265 if (f.contains(Flags.ALTERNATE))
3266 sb.append('0');
3267 if (f.contains(Flags.ZERO_PAD)) {
3268 trailingZeros(sb, width - len);
3269 }
3270 sb.append(s);
3271 } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3272 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3273 Flags.PLUS);
3274 String s = Long.toHexString(value);
3275 int len = (f.contains(Flags.ALTERNATE)
3276 ? s.length() + 2
3277 : s.length());
3278
3279 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3280 if (f.contains(Flags.ALTERNATE))
3281 sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3282 if (f.contains(Flags.ZERO_PAD)) {
3283 trailingZeros(sb, width - len);
3284 }
3285 if (f.contains(Flags.UPPERCASE))
3286 s = toUpperCaseWithLocale(s, l);
3287 sb.append(s);
3288 }
3289
3290 // justify based on width
3291 appendJustified(a, sb);
3292 }
3293
3294 // neg := val < 0
3295 private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3296 if (!neg) {
3297 if (f.contains(Flags.PLUS)) {
3298 sb.append('+');
3299 } else if (f.contains(Flags.LEADING_SPACE)) {
3300 sb.append(' ');
3301 }
3302 } else {
3303 if (f.contains(Flags.PARENTHESES))
3304 sb.append('(');
3305 else
3306 sb.append('-');
3307 }
3308 return sb;
3309 }
3310
3311 // neg := val < 0
3312 private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3313 if (neg && f.contains(Flags.PARENTHESES))
3314 sb.append(')');
3315 return sb;
3316 }
3317
3318 private void print(BigInteger value, Locale l) throws IOException {
3319 StringBuilder sb = new StringBuilder();
3320 boolean neg = value.signum() == -1;
3321 BigInteger v = value.abs();
3322
3323 // leading sign indicator
3324 leadingSign(sb, neg);
3325
3326 // the value
3327 if (c == Conversion.DECIMAL_INTEGER) {
3328 localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
3329 } else if (c == Conversion.OCTAL_INTEGER) {
3330 String s = v.toString(8);
3331
3332 int len = s.length() + sb.length();
3333 if (neg && f.contains(Flags.PARENTHESES))
3334 len++;
3335
3336 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3337 if (f.contains(Flags.ALTERNATE)) {
3338 len++;
3339 sb.append('0');
3340 }
3341 if (f.contains(Flags.ZERO_PAD)) {
3342 trailingZeros(sb, width - len);
3343 }
3344 sb.append(s);
3345 } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3346 String s = v.toString(16);
3347
3348 int len = s.length() + sb.length();
3349 if (neg && f.contains(Flags.PARENTHESES))
3350 len++;
3351
3352 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3353 if (f.contains(Flags.ALTERNATE)) {
3354 len += 2;
3355 sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3356 }
3357 if (f.contains(Flags.ZERO_PAD)) {
3358 trailingZeros(sb, width - len);
3359 }
3360 if (f.contains(Flags.UPPERCASE))
3361 s = toUpperCaseWithLocale(s, l);
3362 sb.append(s);
3363 }
3364
3365 // trailing sign indicator
3366 trailingSign(sb, (value.signum() == -1));
3367
3368 // justify based on width
3369 appendJustified(a, sb);
3370 }
3371
3372 private void print(float value, Locale l) throws IOException {
3373 print((double) value, l);
3374 }
3375
3376 private void print(double value, Locale l) throws IOException {
3377 StringBuilder sb = new StringBuilder();
3378 boolean neg = Double.compare(value, 0.0) == -1;
3379
3380 if (!Double.isNaN(value)) {
3381 double v = Math.abs(value);
3382
3383 // leading sign indicator
3384 leadingSign(sb, neg);
3385
3386 // the value
3387 if (!Double.isInfinite(v))
3388 print(sb, v, l, f, c, precision, neg);
3389 else
3390 sb.append(f.contains(Flags.UPPERCASE)
3391 ? "INFINITY" : "Infinity");
3392
3393 // trailing sign indicator
3394 trailingSign(sb, neg);
3395 } else {
3396 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3397 }
3398
3399 // justify based on width
3400 appendJustified(a, sb);
3401 }
3402
3403 // !Double.isInfinite(value) && !Double.isNaN(value)
3404 private void print(StringBuilder sb, double value, Locale l,
3405 Flags f, char c, int precision, boolean neg)
3406 throws IOException
3407 {
3408 if (c == Conversion.SCIENTIFIC) {
3409 // Create a new FormattedFloatingDecimal with the desired
3410 // precision.
3411 int prec = (precision == -1 ? 6 : precision);
3412
3413 FormattedFloatingDecimal fd
3414 = FormattedFloatingDecimal.valueOf(value, prec,
3415 FormattedFloatingDecimal.Form.SCIENTIFIC);
3416
3417 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3418 addZeros(mant, prec);
3419
3420 // If the precision is zero and the '#' flag is set, add the
3421 // requested decimal point.
3422 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3423 mant.append('.');
3424 }
3425
3426 char[] exp = (value == 0.0)
3427 ? new char[] {'+','0','0'} : fd.getExponent();
3428
3429 int newW = width;
3430 if (width != -1) {
3431 newW = adjustWidth(width - exp.length - 1, f, neg);
3432 }
3433 localizedMagnitude(sb, mant, 0, f, newW, l);
3434
3435 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3436
3437 char sign = exp[0];
3438 assert(sign == '+' || sign == '-');
3439 sb.append(sign);
3440
3441 localizedMagnitudeExp(sb, exp, 1, l);
3442 } else if (c == Conversion.DECIMAL_FLOAT) {
3443 // Create a new FormattedFloatingDecimal with the desired
3444 // precision.
3445 int prec = (precision == -1 ? 6 : precision);
3446
3447 FormattedFloatingDecimal fd
3448 = FormattedFloatingDecimal.valueOf(value, prec,
3449 FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3450
3451 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3452 addZeros(mant, prec);
3453
3454 // If the precision is zero and the '#' flag is set, add the
3455 // requested decimal point.
3456 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3457 mant.append('.');
3458
3459 int newW = width;
3460 if (width != -1)
3461 newW = adjustWidth(width, f, neg);
3462 localizedMagnitude(sb, mant, 0, f, newW, l);
3463 } else if (c == Conversion.GENERAL) {
3464 int prec = precision;
3465 if (precision == -1)
3466 prec = 6;
3467 else if (precision == 0)
3468 prec = 1;
3469
3470 char[] exp;
3471 StringBuilder mant = new StringBuilder();
3472 int expRounded;
3473 if (value == 0.0) {
3474 exp = null;
3475 mant.append('0');
3476 expRounded = 0;
3477 } else {
3478 FormattedFloatingDecimal fd
3479 = FormattedFloatingDecimal.valueOf(value, prec,
3480 FormattedFloatingDecimal.Form.GENERAL);
3481 exp = fd.getExponent();
3482 mant.append(fd.getMantissa());
3483 expRounded = fd.getExponentRounded();
3484 }
3485
3486 if (exp != null) {
3487 prec -= 1;
3488 } else {
3489 prec -= expRounded + 1;
3490 }
3491
3492 addZeros(mant, prec);
3493 // If the precision is zero and the '#' flag is set, add the
3494 // requested decimal point.
3495 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3496 mant.append('.');
3497 }
3498
3499 int newW = width;
3500 if (width != -1) {
3501 if (exp != null)
3502 newW = adjustWidth(width - exp.length - 1, f, neg);
3503 else
3504 newW = adjustWidth(width, f, neg);
3505 }
3506 localizedMagnitude(sb, mant, 0, f, newW, l);
3507
3508 if (exp != null) {
3509 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3510
3511 char sign = exp[0];
3512 assert(sign == '+' || sign == '-');
3513 sb.append(sign);
3514
3515 localizedMagnitudeExp(sb, exp, 1, l);
3516 }
3517 } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3518 int prec = precision;
3519 if (precision == -1)
3520 // assume that we want all of the digits
3521 prec = 0;
3522 else if (precision == 0)
3523 prec = 1;
3524
3525 String s = hexDouble(value, prec);
3526
3527 StringBuilder va = new StringBuilder();
3528 boolean upper = f.contains(Flags.UPPERCASE);
3529 sb.append(upper ? "0X" : "0x");
3530
3531 if (f.contains(Flags.ZERO_PAD)) {
3532 trailingZeros(sb, width - s.length() - 2);
3533 }
3534
3535 int idx = s.indexOf('p');
3536 if (upper) {
3537 String tmp = s.substring(0, idx);
3538 // don't localize hex
3539 tmp = tmp.toUpperCase(Locale.ROOT);
3540 va.append(tmp);
3541 } else {
3542 va.append(s, 0, idx);
3543 }
3544 if (prec != 0) {
3545 addZeros(va, prec);
3546 }
3547 sb.append(va);
3548 sb.append(upper ? 'P' : 'p');
3549 sb.append(s, idx+1, s.length());
3550 }
3551 }
3552
3553 // Add zeros to the requested precision.
3554 private void addZeros(StringBuilder sb, int prec) {
3555 // Look for the dot. If we don't find one, the we'll need to add
3556 // it before we add the zeros.
3557 int len = sb.length();
3558 int i;
3559 for (i = 0; i < len; i++) {
3560 if (sb.charAt(i) == '.') {
3561 break;
3562 }
3563 }
3564 boolean needDot = false;
3565 if (i == len) {
3566 needDot = true;
3567 }
3568
3569 // Determine existing precision.
3570 int outPrec = len - i - (needDot ? 0 : 1);
3571 assert (outPrec <= prec);
3572 if (outPrec == prec) {
3573 return;
3574 }
3575
3576 // Add dot if previously determined to be necessary.
3577 if (needDot) {
3578 sb.append('.');
3579 }
3580
3581 // Add zeros.
3582 trailingZeros(sb, prec - outPrec);
3583 }
3584
3585 // Method assumes that d > 0.
3586 private String hexDouble(double d, int prec) {
3587 // Let Double.toHexString handle simple cases
3588 if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
3589 // remove "0x"
3590 return Double.toHexString(d).substring(2);
3591 } else {
3592 assert(prec >= 1 && prec <= 12);
3593
3594 int exponent = Math.getExponent(d);
3595 boolean subnormal
3596 = (exponent == Double.MIN_EXPONENT - 1);
3597
3598 // If this is subnormal input so normalize (could be faster to
3599 // do as integer operation).
3600 if (subnormal) {
3601 scaleUp = Math.scalb(1.0, 54);
3602 d *= scaleUp;
3603 // Calculate the exponent. This is not just exponent + 54
3604 // since the former is not the normalized exponent.
3605 exponent = Math.getExponent(d);
3606 assert exponent >= Double.MIN_EXPONENT &&
3607 exponent <= Double.MAX_EXPONENT: exponent;
3608 }
3609
3610 int precision = 1 + prec*4;
3611 int shiftDistance
3612 = DoubleConsts.SIGNIFICAND_WIDTH - precision;
3613 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3614
3615 long doppel = Double.doubleToLongBits(d);
3616 // Deterime the number of bits to keep.
3617 long newSignif
3618 = (doppel & (DoubleConsts.EXP_BIT_MASK
3619 | DoubleConsts.SIGNIF_BIT_MASK))
3620 >> shiftDistance;
3621 // Bits to round away.
3622 long roundingBits = doppel & ~(~0L << shiftDistance);
3623
3624 // To decide how to round, look at the low-order bit of the
3625 // working significand, the highest order discarded bit (the
3626 // round bit) and whether any of the lower order discarded bits
3627 // are nonzero (the sticky bit).
3628
3629 boolean leastZero = (newSignif & 0x1L) == 0L;
3630 boolean round
3631 = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3632 boolean sticky = shiftDistance > 1 &&
3633 (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3634 if((leastZero && round && sticky) || (!leastZero && round)) {
3635 newSignif++;
3636 }
3637
3638 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3639 newSignif = signBit | (newSignif << shiftDistance);
3640 double result = Double.longBitsToDouble(newSignif);
3641
3642 if (Double.isInfinite(result) ) {
3643 // Infinite result generated by rounding
3644 return "1.0p1024";
3645 } else {
3646 String res = Double.toHexString(result).substring(2);
3647 if (!subnormal)
3648 return res;
3649 else {
3650 // Create a normalized subnormal string.
3651 int idx = res.indexOf('p');
3652 if (idx == -1) {
3653 // No 'p' character in hex string.
3654 assert false;
3655 return null;
3656 } else {
3657 // Get exponent and append at the end.
3658 String exp = res.substring(idx + 1);
3659 int iexp = Integer.parseInt(exp) -54;
3660 return res.substring(0, idx) + "p"
3661 + Integer.toString(iexp);
3662 }
3663 }
3664 }
3665 }
3666 }
3667
3668 private void print(BigDecimal value, Locale l) throws IOException {
3669 if (c == Conversion.HEXADECIMAL_FLOAT)
3670 failConversion(c, value);
3671 StringBuilder sb = new StringBuilder();
3672 boolean neg = value.signum() == -1;
3673 BigDecimal v = value.abs();
3674 // leading sign indicator
3675 leadingSign(sb, neg);
3676
3677 // the value
3678 print(sb, v, l, f, c, precision, neg);
3679
3680 // trailing sign indicator
3681 trailingSign(sb, neg);
3682
3683 // justify based on width
3684 appendJustified(a, sb);
3685 }
3686
3687 // value > 0
3688 private void print(StringBuilder sb, BigDecimal value, Locale l,
3689 Flags f, char c, int precision, boolean neg)
3690 throws IOException
3691 {
3692 if (c == Conversion.SCIENTIFIC) {
3693 // Create a new BigDecimal with the desired precision.
3694 int prec = (precision == -1 ? 6 : precision);
3695 int scale = value.scale();
3696 int origPrec = value.precision();
3697 int nzeros = 0;
3698 int compPrec;
3699
3700 if (prec > origPrec - 1) {
3701 compPrec = origPrec;
3702 nzeros = prec - (origPrec - 1);
3703 } else {
3704 compPrec = prec + 1;
3705 }
3706
3707 MathContext mc = new MathContext(compPrec);
3708 BigDecimal v
3709 = new BigDecimal(value.unscaledValue(), scale, mc);
3710
3711 BigDecimalLayout bdl
3712 = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3713 BigDecimalLayoutForm.SCIENTIFIC);
3714
3715 StringBuilder mant = bdl.mantissa();
3716
3717 // Add a decimal point if necessary. The mantissa may not
3718 // contain a decimal point if the scale is zero (the internal
3719 // representation has no fractional part) or the original
3720 // precision is one. Append a decimal point if '#' is set or if
3721 // we require zero padding to get to the requested precision.
3722 if ((origPrec == 1 || !bdl.hasDot())
3723 && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
3724 mant.append('.');
3725 }
3726
3727 // Add trailing zeros in the case precision is greater than
3728 // the number of available digits after the decimal separator.
3729 trailingZeros(mant, nzeros);
3730
3731 StringBuilder exp = bdl.exponent();
3732 int newW = width;
3733 if (width != -1) {
3734 newW = adjustWidth(width - exp.length() - 1, f, neg);
3735 }
3736 localizedMagnitude(sb, mant, 0, f, newW, l);
3737
3738 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3739
3740 Flags flags = f.dup().remove(Flags.GROUP);
3741 char sign = exp.charAt(0);
3742 assert(sign == '+' || sign == '-');
3743 sb.append(sign);
3744
3745 sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3746 } else if (c == Conversion.DECIMAL_FLOAT) {
3747 // Create a new BigDecimal with the desired precision.
3748 int prec = (precision == -1 ? 6 : precision);
3749 int scale = value.scale();
3750
3751 if (scale > prec) {
3752 // more "scale" digits than the requested "precision"
3753 int compPrec = value.precision();
3754 if (compPrec <= scale) {
3755 // case of 0.xxxxxx
3756 value = value.setScale(prec, RoundingMode.HALF_UP);
3757 } else {
3758 compPrec -= (scale - prec);
3759 value = new BigDecimal(value.unscaledValue(),
3760 scale,
3761 new MathContext(compPrec));
3762 }
3763 }
3764 BigDecimalLayout bdl = new BigDecimalLayout(
3765 value.unscaledValue(),
3766 value.scale(),
3767 BigDecimalLayoutForm.DECIMAL_FLOAT);
3768
3769 StringBuilder mant = bdl.mantissa();
3770 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3771
3772 // Add a decimal point if necessary. The mantissa may not
3773 // contain a decimal point if the scale is zero (the internal
3774 // representation has no fractional part). Append a decimal
3775 // point if '#' is set or we require zero padding to get to the
3776 // requested precision.
3777 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
3778 || nzeros > 0)) {
3779 mant.append('.');
3780 }
3781
3782 // Add trailing zeros if the precision is greater than the
3783 // number of available digits after the decimal separator.
3784 trailingZeros(mant, nzeros);
3785
3786 localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
3787 } else if (c == Conversion.GENERAL) {
3788 int prec = precision;
3789 if (precision == -1)
3790 prec = 6;
3791 else if (precision == 0)
3792 prec = 1;
3793
3794 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3795 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3796 if ((value.equals(BigDecimal.ZERO))
3797 || ((value.compareTo(tenToTheNegFour) != -1)
3798 && (value.compareTo(tenToThePrec) == -1))) {
3799
3800 int e = - value.scale()
3801 + (value.unscaledValue().toString().length() - 1);
3802
3803 // xxx.yyy
3804 // g precision (# sig digits) = #x + #y
3805 // f precision = #y
3806 // exponent = #x - 1
3807 // => f precision = g precision - exponent - 1
3808 // 0.000zzz
3809 // g precision (# sig digits) = #z
3810 // f precision = #0 (after '.') + #z
3811 // exponent = - #0 (after '.') - 1
3812 // => f precision = g precision - exponent - 1
3813 prec = prec - e - 1;
3814
3815 print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3816 neg);
3817 } else {
3818 print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3819 }
3820 } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3821 // This conversion isn't supported. The error should be
3822 // reported earlier.
3823 assert false;
3824 }
3825 }
3826
3827 private class BigDecimalLayout {
3828 private StringBuilder mant;
3829 private StringBuilder exp;
3830 private boolean dot = false;
3831 private int scale;
3832
3833 public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3834 layout(intVal, scale, form);
3835 }
3836
3837 public boolean hasDot() {
3838 return dot;
3839 }
3840
3841 public int scale() {
3842 return scale;
3843 }
3844
3845 public StringBuilder mantissa() {
3846 return mant;
3847 }
3848
3849 // The exponent will be formatted as a sign ('+' or '-') followed
3850 // by the exponent zero-padded to include at least two digits.
3851 public StringBuilder exponent() {
3852 return exp;
3853 }
3854
3855 private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3856 String coeff = intVal.toString();
3857 this.scale = scale;
3858
3859 // Construct a buffer, with sufficient capacity for all cases.
3860 // If E-notation is needed, length will be: +1 if negative, +1
3861 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3862 // exponent. Otherwise it could have +1 if negative, plus
3863 // leading "0.00000"
3864 int len = coeff.length();
3865 mant = new StringBuilder(len + 14);
3866
3867 if (scale == 0) {
3868 if (len > 1) {
3869 mant.append(coeff.charAt(0));
3870 if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3871 mant.append('.');
3872 dot = true;
3873 mant.append(coeff, 1, len);
3874 exp = new StringBuilder("+");
3875 if (len < 10) {
3876 exp.append('0').append(len - 1);
3877 } else {
3878 exp.append(len - 1);
3879 }
3880 } else {
3881 mant.append(coeff, 1, len);
3882 }
3883 } else {
3884 mant.append(coeff);
3885 if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3886 exp = new StringBuilder("+00");
3887 }
3888 }
3889 } else if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3890 // count of padding zeros
3891
3892 if (scale >= len) {
3893 // 0.xxx form
3894 mant.append("0.");
3895 dot = true;
3896 trailingZeros(mant, scale - len);
3897 mant.append(coeff);
3898 } else {
3899 if (scale > 0) {
3900 // xx.xx form
3901 int pad = len - scale;
3902 mant.append(coeff, 0, pad);
3903 mant.append('.');
3904 dot = true;
3905 mant.append(coeff, pad, len);
3906 } else { // scale < 0
3907 // xx form
3908 mant.append(coeff, 0, len);
3909 if (intVal.signum() != 0) {
3910 trailingZeros(mant, -scale);
3911 }
3912 this.scale = 0;
3913 }
3914 }
3915 } else {
3916 // x.xxx form
3917 mant.append(coeff.charAt(0));
3918 if (len > 1) {
3919 mant.append('.');
3920 dot = true;
3921 mant.append(coeff, 1, len);
3922 }
3923 exp = new StringBuilder();
3924 long adjusted = -(long) scale + (len - 1);
3925 if (adjusted != 0) {
3926 long abs = Math.abs(adjusted);
3927 // require sign
3928 exp.append(adjusted < 0 ? '-' : '+');
3929 if (abs < 10) {
3930 exp.append('0');
3931 }
3932 exp.append(abs);
3933 } else {
3934 exp.append("+00");
3935 }
3936 }
3937 }
3938 }
3939
3940 private int adjustWidth(int width, Flags f, boolean neg) {
3941 int newW = width;
3942 if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3943 newW--;
3944 return newW;
3945 }
3946
3947 // Add trailing zeros
3948 private void trailingZeros(StringBuilder sb, int nzeros) {
3949 for (int i = 0; i < nzeros; i++) {
3950 sb.append('0');
3951 }
3952 }
3953
3954 private void print(Calendar t, char c, Locale l) throws IOException {
3955 StringBuilder sb = new StringBuilder();
3956 print(sb, t, c, l);
3957
3958 // justify based on width
3959 if (f.contains(Flags.UPPERCASE)) {
3960 appendJustified(a, toUpperCaseWithLocale(sb.toString(), l));
3961 } else {
3962 appendJustified(a, sb);
3963 }
3964 }
3965
3966 private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
3967 throws IOException {
3968 if (sb == null)
3969 sb = new StringBuilder();
3970 switch (c) {
3971 case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3972 case DateTime.HOUR_0: // 'I' (01 - 12)
3973 case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H
3974 case DateTime.HOUR: { // 'l' (1 - 12) -- like I
3975 int i = t.get(Calendar.HOUR_OF_DAY);
3976 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3977 i = (i == 0 || i == 12 ? 12 : i % 12);
3978 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3979 || c == DateTime.HOUR_0
3980 ? Flags.ZERO_PAD
3981 : Flags.NONE);
3982 sb.append(localizedMagnitude(null, i, flags, 2, l));
3983 break;
3984 }
3985 case DateTime.MINUTE: { // 'M' (00 - 59)
3986 int i = t.get(Calendar.MINUTE);
3987 Flags flags = Flags.ZERO_PAD;
3988 sb.append(localizedMagnitude(null, i, flags, 2, l));
3989 break;
3990 }
3991 case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
3992 int i = t.get(Calendar.MILLISECOND) * 1000000;
3993 Flags flags = Flags.ZERO_PAD;
3994 sb.append(localizedMagnitude(null, i, flags, 9, l));
3995 break;
3996 }
3997 case DateTime.MILLISECOND: { // 'L' (000 - 999)
3998 int i = t.get(Calendar.MILLISECOND);
3999 Flags flags = Flags.ZERO_PAD;
4000 sb.append(localizedMagnitude(null, i, flags, 3, l));
4001 break;
4002 }
4003 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4004 long i = t.getTimeInMillis();
4005 Flags flags = Flags.NONE;
4006 sb.append(localizedMagnitude(null, i, flags, width, l));
4007 break;
4008 }
4009 case DateTime.AM_PM: { // 'p' (am or pm)
4010 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4011 String[] ampm = { "AM", "PM" };
4012 if (l != null && l != Locale.US) {
4013 DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4014 ampm = dfs.getAmPmStrings();
4015 }
4016 String s = ampm[t.get(Calendar.AM_PM)];
4017 sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
4018 Locale.getDefault(Locale.Category.FORMAT))));
4019 break;
4020 }
4021 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4022 long i = t.getTimeInMillis() / 1000;
4023 Flags flags = Flags.NONE;
4024 sb.append(localizedMagnitude(null, i, flags, width, l));
4025 break;
4026 }
4027 case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
4028 int i = t.get(Calendar.SECOND);
4029 Flags flags = Flags.ZERO_PAD;
4030 sb.append(localizedMagnitude(null, i, flags, 2, l));
4031 break;
4032 }
4033 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4034 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
4035 boolean neg = i < 0;
4036 sb.append(neg ? '-' : '+');
4037 if (neg)
4038 i = -i;
4039 int min = i / 60000;
4040 // combine minute and hour into a single integer
4041 int offset = (min / 60) * 100 + (min % 60);
4042 Flags flags = Flags.ZERO_PAD;
4043
4044 sb.append(localizedMagnitude(null, offset, flags, 4, l));
4045 break;
4046 }
4047 case DateTime.ZONE: { // 'Z' (symbol)
4048 TimeZone tz = t.getTimeZone();
4049 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
4050 TimeZone.SHORT,
4051 Objects.requireNonNullElse(l, Locale.US)));
4052 break;
4053 }
4054
4055 // Date
4056 case DateTime.NAME_OF_DAY_ABBREV: // 'a'
4057 case DateTime.NAME_OF_DAY: { // 'A'
4058 int i = t.get(Calendar.DAY_OF_WEEK);
4059 Locale lt = Objects.requireNonNullElse(l, Locale.US);
4060 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4061 if (c == DateTime.NAME_OF_DAY)
4062 sb.append(dfs.getWeekdays()[i]);
4063 else
4064 sb.append(dfs.getShortWeekdays()[i]);
4065 break;
4066 }
4067 case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
4068 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4069 case DateTime.NAME_OF_MONTH: { // 'B'
4070 int i = t.get(Calendar.MONTH);
4071 Locale lt = Objects.requireNonNullElse(l, Locale.US);
4072 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4073 if (c == DateTime.NAME_OF_MONTH)
4074 sb.append(dfs.getMonths()[i]);
4075 else
4076 sb.append(dfs.getShortMonths()[i]);
4077 break;
4078 }
4079 case DateTime.CENTURY: // 'C' (00 - 99)
4080 case DateTime.YEAR_2: // 'y' (00 - 99)
4081 case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
4082 int i = t.get(Calendar.YEAR);
4083 int size = 2;
4084 switch (c) {
4085 case DateTime.CENTURY:
4086 i /= 100;
4087 break;
4088 case DateTime.YEAR_2:
4089 i %= 100;
4090 break;
4091 case DateTime.YEAR_4:
4092 size = 4;
4093 break;
4094 }
4095 Flags flags = Flags.ZERO_PAD;
4096 sb.append(localizedMagnitude(null, i, flags, size, l));
4097 break;
4098 }
4099 case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
4100 case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
4101 int i = t.get(Calendar.DATE);
4102 Flags flags = (c == DateTime.DAY_OF_MONTH_0
4103 ? Flags.ZERO_PAD
4104 : Flags.NONE);
4105 sb.append(localizedMagnitude(null, i, flags, 2, l));
4106 break;
4107 }
4108 case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
4109 int i = t.get(Calendar.DAY_OF_YEAR);
4110 Flags flags = Flags.ZERO_PAD;
4111 sb.append(localizedMagnitude(null, i, flags, 3, l));
4112 break;
4113 }
4114 case DateTime.MONTH: { // 'm' (01 - 12)
4115 int i = t.get(Calendar.MONTH) + 1;
4116 Flags flags = Flags.ZERO_PAD;
4117 sb.append(localizedMagnitude(null, i, flags, 2, l));
4118 break;
4119 }
4120
4121 // Composites
4122 case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4123 case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
4124 char sep = ':';
4125 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4126 print(sb, t, DateTime.MINUTE, l);
4127 if (c == DateTime.TIME) {
4128 sb.append(sep);
4129 print(sb, t, DateTime.SECOND, l);
4130 }
4131 break;
4132 }
4133 case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
4134 char sep = ':';
4135 print(sb, t, DateTime.HOUR_0, l).append(sep);
4136 print(sb, t, DateTime.MINUTE, l).append(sep);
4137 print(sb, t, DateTime.SECOND, l).append(' ');
4138 // this may be in wrong place for some locales
4139 StringBuilder tsb = new StringBuilder();
4140 print(tsb, t, DateTime.AM_PM, l);
4141
4142 sb.append(toUpperCaseWithLocale(tsb.toString(), l));
4143 break;
4144 }
4145 case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4146 char sep = ' ';
4147 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4148 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4149 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4150 print(sb, t, DateTime.TIME, l).append(sep);
4151 print(sb, t, DateTime.ZONE, l).append(sep);
4152 print(sb, t, DateTime.YEAR_4, l);
4153 break;
4154 }
4155 case DateTime.DATE: { // 'D' (mm/dd/yy)
4156 char sep = '/';
4157 print(sb, t, DateTime.MONTH, l).append(sep);
4158 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4159 print(sb, t, DateTime.YEAR_2, l);
4160 break;
4161 }
4162 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4163 char sep = '-';
4164 print(sb, t, DateTime.YEAR_4, l).append(sep);
4165 print(sb, t, DateTime.MONTH, l).append(sep);
4166 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4167 break;
4168 }
4169 default:
4170 assert false;
4171 }
4172 return sb;
4173 }
4174
4175 private void print(TemporalAccessor t, char c, Locale l) throws IOException {
4176 StringBuilder sb = new StringBuilder();
4177 print(sb, t, c, l);
4178 // justify based on width
4179 if (f.contains(Flags.UPPERCASE)) {
4180 appendJustified(a, toUpperCaseWithLocale(sb.toString(), l));
4181 } else {
4182 appendJustified(a, sb);
4183 }
4184 }
4185
4186 private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4187 Locale l) throws IOException {
4188 if (sb == null)
4189 sb = new StringBuilder();
4190 try {
4191 switch (c) {
4192 case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23)
4193 int i = t.get(ChronoField.HOUR_OF_DAY);
4194 sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4195 break;
4196 }
4197 case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H
4198 int i = t.get(ChronoField.HOUR_OF_DAY);
4199 sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4200 break;
4201 }
4202 case DateTime.HOUR_0: { // 'I' (01 - 12)
4203 int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4204 sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4205 break;
4206 }
4207 case DateTime.HOUR: { // 'l' (1 - 12) -- like I
4208 int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4209 sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4210 break;
4211 }
4212 case DateTime.MINUTE: { // 'M' (00 - 59)
4213 int i = t.get(ChronoField.MINUTE_OF_HOUR);
4214 Flags flags = Flags.ZERO_PAD;
4215 sb.append(localizedMagnitude(null, i, flags, 2, l));
4216 break;
4217 }
4218 case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
4219 int i;
4220 try {
4221 i = t.get(ChronoField.NANO_OF_SECOND);
4222 } catch (UnsupportedTemporalTypeException u) {
4223 i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4224 }
4225 Flags flags = Flags.ZERO_PAD;
4226 sb.append(localizedMagnitude(null, i, flags, 9, l));
4227 break;
4228 }
4229 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4230 int i = t.get(ChronoField.MILLI_OF_SECOND);
4231 Flags flags = Flags.ZERO_PAD;
4232 sb.append(localizedMagnitude(null, i, flags, 3, l));
4233 break;
4234 }
4235 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4236 long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4237 t.getLong(ChronoField.MILLI_OF_SECOND);
4238 Flags flags = Flags.NONE;
4239 sb.append(localizedMagnitude(null, i, flags, width, l));
4240 break;
4241 }
4242 case DateTime.AM_PM: { // 'p' (am or pm)
4243 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4244 String[] ampm = { "AM", "PM" };
4245 if (l != null && l != Locale.US) {
4246 DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4247 ampm = dfs.getAmPmStrings();
4248 }
4249 String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4250 sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
4251 Locale.getDefault(Locale.Category.FORMAT))));
4252 break;
4253 }
4254 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4255 long i = t.getLong(ChronoField.INSTANT_SECONDS);
4256 Flags flags = Flags.NONE;
4257 sb.append(localizedMagnitude(null, i, flags, width, l));
4258 break;
4259 }
4260 case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
4261 int i = t.get(ChronoField.SECOND_OF_MINUTE);
4262 Flags flags = Flags.ZERO_PAD;
4263 sb.append(localizedMagnitude(null, i, flags, 2, l));
4264 break;
4265 }
4266 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4267 int i = t.get(ChronoField.OFFSET_SECONDS);
4268 boolean neg = i < 0;
4269 sb.append(neg ? '-' : '+');
4270 if (neg)
4271 i = -i;
4272 int min = i / 60;
4273 // combine minute and hour into a single integer
4274 int offset = (min / 60) * 100 + (min % 60);
4275 Flags flags = Flags.ZERO_PAD;
4276 sb.append(localizedMagnitude(null, offset, flags, 4, l));
4277 break;
4278 }
4279 case DateTime.ZONE: { // 'Z' (symbol)
4280 ZoneId zid = t.query(TemporalQueries.zone());
4281 if (zid == null) {
4282 throw new IllegalFormatConversionException(c, t.getClass());
4283 }
4284 if (!(zid instanceof ZoneOffset) &&
4285 t.isSupported(ChronoField.INSTANT_SECONDS)) {
4286 Instant instant = Instant.from(t);
4287 sb.append(TimeZone.getTimeZone(zid.getId())
4288 .getDisplayName(zid.getRules().isDaylightSavings(instant),
4289 TimeZone.SHORT,
4290 Objects.requireNonNullElse(l, Locale.US)));
4291 break;
4292 }
4293 sb.append(zid.getId());
4294 break;
4295 }
4296 // Date
4297 case DateTime.NAME_OF_DAY_ABBREV: // 'a'
4298 case DateTime.NAME_OF_DAY: { // 'A'
4299 int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4300 Locale lt = Objects.requireNonNullElse(l, Locale.US);
4301 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4302 if (c == DateTime.NAME_OF_DAY)
4303 sb.append(dfs.getWeekdays()[i]);
4304 else
4305 sb.append(dfs.getShortWeekdays()[i]);
4306 break;
4307 }
4308 case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
4309 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4310 case DateTime.NAME_OF_MONTH: { // 'B'
4311 int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4312 Locale lt = Objects.requireNonNullElse(l, Locale.US);
4313 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4314 if (c == DateTime.NAME_OF_MONTH)
4315 sb.append(dfs.getMonths()[i]);
4316 else
4317 sb.append(dfs.getShortMonths()[i]);
4318 break;
4319 }
4320 case DateTime.CENTURY: // 'C' (00 - 99)
4321 case DateTime.YEAR_2: // 'y' (00 - 99)
4322 case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
4323 int i = t.get(ChronoField.YEAR_OF_ERA);
4324 int size = 2;
4325 switch (c) {
4326 case DateTime.CENTURY:
4327 i /= 100;
4328 break;
4329 case DateTime.YEAR_2:
4330 i %= 100;
4331 break;
4332 case DateTime.YEAR_4:
4333 size = 4;
4334 break;
4335 }
4336 Flags flags = Flags.ZERO_PAD;
4337 sb.append(localizedMagnitude(null, i, flags, size, l));
4338 break;
4339 }
4340 case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
4341 case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
4342 int i = t.get(ChronoField.DAY_OF_MONTH);
4343 Flags flags = (c == DateTime.DAY_OF_MONTH_0
4344 ? Flags.ZERO_PAD
4345 : Flags.NONE);
4346 sb.append(localizedMagnitude(null, i, flags, 2, l));
4347 break;
4348 }
4349 case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
4350 int i = t.get(ChronoField.DAY_OF_YEAR);
4351 Flags flags = Flags.ZERO_PAD;
4352 sb.append(localizedMagnitude(null, i, flags, 3, l));
4353 break;
4354 }
4355 case DateTime.MONTH: { // 'm' (01 - 12)
4356 int i = t.get(ChronoField.MONTH_OF_YEAR);
4357 Flags flags = Flags.ZERO_PAD;
4358 sb.append(localizedMagnitude(null, i, flags, 2, l));
4359 break;
4360 }
4361
4362 // Composites
4363 case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4364 case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
4365 char sep = ':';
4366 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4367 print(sb, t, DateTime.MINUTE, l);
4368 if (c == DateTime.TIME) {
4369 sb.append(sep);
4370 print(sb, t, DateTime.SECOND, l);
4371 }
4372 break;
4373 }
4374 case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
4375 char sep = ':';
4376 print(sb, t, DateTime.HOUR_0, l).append(sep);
4377 print(sb, t, DateTime.MINUTE, l).append(sep);
4378 print(sb, t, DateTime.SECOND, l).append(' ');
4379 // this may be in wrong place for some locales
4380 StringBuilder tsb = new StringBuilder();
4381 print(tsb, t, DateTime.AM_PM, l);
4382 sb.append(toUpperCaseWithLocale(tsb.toString(), l));
4383 break;
4384 }
4385 case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4386 char sep = ' ';
4387 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4388 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4389 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4390 print(sb, t, DateTime.TIME, l).append(sep);
4391 print(sb, t, DateTime.ZONE, l).append(sep);
4392 print(sb, t, DateTime.YEAR_4, l);
4393 break;
4394 }
4395 case DateTime.DATE: { // 'D' (mm/dd/yy)
4396 char sep = '/';
4397 print(sb, t, DateTime.MONTH, l).append(sep);
4398 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4399 print(sb, t, DateTime.YEAR_2, l);
4400 break;
4401 }
4402 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4403 char sep = '-';
4404 print(sb, t, DateTime.YEAR_4, l).append(sep);
4405 print(sb, t, DateTime.MONTH, l).append(sep);
4406 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4407 break;
4408 }
4409 default:
4410 assert false;
4411 }
4412 } catch (DateTimeException x) {
4413 throw new IllegalFormatConversionException(c, t.getClass());
4414 }
4415 return sb;
4416 }
4417
4418 // -- Methods to support throwing exceptions --
4419
4420 private void failMismatch(Flags f, char c) {
4421 String fs = f.toString();
4422 throw new FormatFlagsConversionMismatchException(fs, c);
4423 }
4424
4425 private void failConversion(char c, Object arg) {
4426 throw new IllegalFormatConversionException(c, arg.getClass());
4427 }
4428
4429 private char getZero(Locale l) {
4430 if ((l != null) && !l.equals(locale())) {
4431 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4432 return dfs.getZeroDigit();
4433 }
4434 return zero;
4435 }
4436
4437 private StringBuilder localizedMagnitude(StringBuilder sb,
4438 long value, Flags f, int width, Locale l) {
4439 return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
4440 }
4441
4442 private StringBuilder localizedMagnitude(StringBuilder sb,
4443 CharSequence value, final int offset, Flags f, int width,
4444 Locale l) {
4445 if (sb == null) {
4446 sb = new StringBuilder();
4447 }
4448 int begin = sb.length();
4449
4450 char zero = getZero(l);
4451
4452 // determine localized grouping separator and size
4453 char grpSep = '\0';
4454 int grpSize = -1;
4455 char decSep = '\0';
4456
4457 int len = value.length();
4458 int dot = len;
4459 for (int j = offset; j < len; j++) {
4460 if (value.charAt(j) == '.') {
4461 dot = j;
4462 break;
4463 }
4464 }
4465
4466 if (dot < len) {
4467 if (l == null || l.equals(Locale.US)) {
4468 decSep = '.';
4469 } else {
4470 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4471 decSep = dfs.getDecimalSeparator();
4472 }
4473 }
4474
4475 if (f.contains(Flags.GROUP)) {
4476 if (l == null || l.equals(Locale.US)) {
4477 grpSep = ',';
4478 grpSize = 3;
4479 } else {
4480 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4481 grpSep = dfs.getGroupingSeparator();
4482 DecimalFormat df = null;
4483 NumberFormat nf = NumberFormat.getNumberInstance(l);
4484 if (nf instanceof DecimalFormat) {
4485 df = (DecimalFormat) nf;
4486 } else {
4487
4488 // Use DecimalFormat constructor to obtain the instance,
4489 // in case NumberFormat.getNumberInstance(l)
4490 // returns instance other than DecimalFormat
4491 LocaleProviderAdapter adapter = LocaleProviderAdapter
4492 .getAdapter(NumberFormatProvider.class, l);
4493 if (!(adapter instanceof ResourceBundleBasedAdapter)) {
4494 adapter = LocaleProviderAdapter.getResourceBundleBased();
4495 }
4496 String[] all = adapter.getLocaleResources(l)
4497 .getNumberPatterns();
4498 df = new DecimalFormat(all[0], dfs);
4499 }
4500 grpSize = df.getGroupingSize();
4501 // Some locales do not use grouping (the number
4502 // pattern for these locales does not contain group, e.g.
4503 // ("#0.###")), but specify a grouping separator.
4504 // To avoid unnecessary identification of the position of
4505 // grouping separator, reset its value with null character
4506 if (!df.isGroupingUsed() || grpSize == 0) {
4507 grpSep = '\0';
4508 }
4509 }
4510 }
4511
4512 // localize the digits inserting group separators as necessary
4513 for (int j = offset; j < len; j++) {
4514 if (j == dot) {
4515 sb.append(decSep);
4516 // no more group separators after the decimal separator
4517 grpSep = '\0';
4518 continue;
4519 }
4520
4521 char c = value.charAt(j);
4522 sb.append((char) ((c - '0') + zero));
4523 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
4524 sb.append(grpSep);
4525 }
4526 }
4527
4528 // apply zero padding
4529 if (width != -1 && f.contains(Flags.ZERO_PAD)) {
4530 for (int k = sb.length(); k < width; k++) {
4531 sb.insert(begin, zero);
4532 }
4533 }
4534
4535 return sb;
4536 }
4537
4538 // Specialized localization of exponents, where the source value can only
4539 // contain characters '0' through '9', starting at index offset, and no
4540 // group separators is added for any locale.
4541 private void localizedMagnitudeExp(StringBuilder sb, char[] value,
4542 final int offset, Locale l) {
4543 char zero = getZero(l);
4544
4545 int len = value.length;
4546 for (int j = offset; j < len; j++) {
4547 char c = value[j];
4548 sb.append((char) ((c - '0') + zero));
4549 }
4550 }
4551 }
4552
4553 private static class Flags {
4554 private int flags;
4555
4556 static final Flags NONE = new Flags(0); // ''
4557
4558 // duplicate declarations from Formattable.java
4559 static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-'
4560 static final Flags UPPERCASE = new Flags(1<<1); // '^'
4561 static final Flags ALTERNATE = new Flags(1<<2); // '#'
4562
4563 // numerics
4564 static final Flags PLUS = new Flags(1<<3); // '+'
4565 static final Flags LEADING_SPACE = new Flags(1<<4); // ' '
4566 static final Flags ZERO_PAD = new Flags(1<<5); // '0'
4567 static final Flags GROUP = new Flags(1<<6); // ','
4568 static final Flags PARENTHESES = new Flags(1<<7); // '('
4569
4570 // indexing
4571 static final Flags PREVIOUS = new Flags(1<<8); // '<'
4572
4573 private Flags(int f) {
4574 flags = f;
4575 }
4576
4577 public int valueOf() {
4578 return flags;
4579 }
4580
4581 public boolean contains(Flags f) {
4582 return (flags & f.valueOf()) == f.valueOf();
4583 }
4584
4585 public Flags dup() {
4586 return new Flags(flags);
4587 }
4588
4589 private Flags add(Flags f) {
4590 flags |= f.valueOf();
4591 return this;
4592 }
4593
4594 public Flags remove(Flags f) {
4595 flags &= ~f.valueOf();
4596 return this;
4597 }
4598
4599 public static Flags parse(String s, int start, int end) {
4600 Flags f = new Flags(0);
4601 for (int i = start; i < end; i++) {
4602 char c = s.charAt(i);
4603 Flags v = parse(c);
4604 if (f.contains(v))
4605 throw new DuplicateFormatFlagsException(v.toString());
4606 f.add(v);
4607 }
4608 return f;
4609 }
4610
4611 // parse those flags which may be provided by users
4612 private static Flags parse(char c) {
4613 switch (c) {
4614 case '-': return LEFT_JUSTIFY;
4615 case '#': return ALTERNATE;
4616 case '+': return PLUS;
4617 case ' ': return LEADING_SPACE;
4618 case '0': return ZERO_PAD;
4619 case ',': return GROUP;
4620 case '(': return PARENTHESES;
4621 case '<': return PREVIOUS;
4622 default:
4623 throw new UnknownFormatFlagsException(String.valueOf(c));
4624 }
4625 }
4626
4627 // Returns a string representation of the current {@code Flags}.
4628 public static String toString(Flags f) {
4629 return f.toString();
4630 }
4631
4632 public String toString() {
4633 StringBuilder sb = new StringBuilder();
4634 if (contains(LEFT_JUSTIFY)) sb.append('-');
4635 if (contains(UPPERCASE)) sb.append('^');
4636 if (contains(ALTERNATE)) sb.append('#');
4637 if (contains(PLUS)) sb.append('+');
4638 if (contains(LEADING_SPACE)) sb.append(' ');
4639 if (contains(ZERO_PAD)) sb.append('0');
4640 if (contains(GROUP)) sb.append(',');
4641 if (contains(PARENTHESES)) sb.append('(');
4642 if (contains(PREVIOUS)) sb.append('<');
4643 return sb.toString();
4644 }
4645 }
4646
4647 private static class Conversion {
4648 // Byte, Short, Integer, Long, BigInteger
4649 // (and associated primitives due to autoboxing)
4650 static final char DECIMAL_INTEGER = 'd';
4651 static final char OCTAL_INTEGER = 'o';
4652 static final char HEXADECIMAL_INTEGER = 'x';
4653 static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4654
4655 // Float, Double, BigDecimal
4656 // (and associated primitives due to autoboxing)
4657 static final char SCIENTIFIC = 'e';
4658 static final char SCIENTIFIC_UPPER = 'E';
4659 static final char GENERAL = 'g';
4660 static final char GENERAL_UPPER = 'G';
4661 static final char DECIMAL_FLOAT = 'f';
4662 static final char HEXADECIMAL_FLOAT = 'a';
4663 static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4664
4665 // Character, Byte, Short, Integer
4666 // (and associated primitives due to autoboxing)
4667 static final char CHARACTER = 'c';
4668 static final char CHARACTER_UPPER = 'C';
4669
4670 // java.util.Date, java.util.Calendar, long
4671 static final char DATE_TIME = 't';
4672 static final char DATE_TIME_UPPER = 'T';
4673
4674 // if (arg.TYPE != boolean) return boolean
4675 // if (arg != null) return true; else return false;
4676 static final char BOOLEAN = 'b';
4677 static final char BOOLEAN_UPPER = 'B';
4678 // if (arg instanceof Formattable) arg.formatTo()
4679 // else arg.toString();
4680 static final char STRING = 's';
4681 static final char STRING_UPPER = 'S';
4682 // arg.hashCode()
4683 static final char HASHCODE = 'h';
4684 static final char HASHCODE_UPPER = 'H';
4685
4686 static final char LINE_SEPARATOR = 'n';
4687 static final char PERCENT_SIGN = '%';
4688
4689 static boolean isValid(char c) {
4690 return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4691 || c == 't' || isCharacter(c));
4692 }
4693
4694 // Returns true iff the Conversion is applicable to all objects.
4695 static boolean isGeneral(char c) {
4696 switch (c) {
4697 case BOOLEAN:
4698 case BOOLEAN_UPPER:
4699 case STRING:
4700 case STRING_UPPER:
4701 case HASHCODE:
4702 case HASHCODE_UPPER:
4703 return true;
4704 default:
4705 return false;
4706 }
4707 }
4708
4709 // Returns true iff the Conversion is applicable to character.
4710 static boolean isCharacter(char c) {
4711 switch (c) {
4712 case CHARACTER:
4713 case CHARACTER_UPPER:
4714 return true;
4715 default:
4716 return false;
4717 }
4718 }
4719
4720 // Returns true iff the Conversion is an integer type.
4721 static boolean isInteger(char c) {
4722 switch (c) {
4723 case DECIMAL_INTEGER:
4724 case OCTAL_INTEGER:
4725 case HEXADECIMAL_INTEGER:
4726 case HEXADECIMAL_INTEGER_UPPER:
4727 return true;
4728 default:
4729 return false;
4730 }
4731 }
4732
4733 // Returns true iff the Conversion is a floating-point type.
4734 static boolean isFloat(char c) {
4735 switch (c) {
4736 case SCIENTIFIC:
4737 case SCIENTIFIC_UPPER:
4738 case GENERAL:
4739 case GENERAL_UPPER:
4740 case DECIMAL_FLOAT:
4741 case HEXADECIMAL_FLOAT:
4742 case HEXADECIMAL_FLOAT_UPPER:
4743 return true;
4744 default:
4745 return false;
4746 }
4747 }
4748
4749 // Returns true iff the Conversion does not require an argument
4750 static boolean isText(char c) {
4751 switch (c) {
4752 case LINE_SEPARATOR:
4753 case PERCENT_SIGN:
4754 return true;
4755 default:
4756 return false;
4757 }
4758 }
4759 }
4760
4761 private static class DateTime {
4762 static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4763 static final char HOUR_0 = 'I'; // (01 - 12)
4764 static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H
4765 static final char HOUR = 'l'; // (1 - 12) -- like I
4766 static final char MINUTE = 'M'; // (00 - 59)
4767 static final char NANOSECOND = 'N'; // (000000000 - 999999999)
4768 static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999)
4769 static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4770 static final char AM_PM = 'p'; // (am or pm)
4771 static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4772 static final char SECOND = 'S'; // (00 - 60 - leap second)
4773 static final char TIME = 'T'; // (24 hour hh:mm:ss)
4774 static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus?
4775 static final char ZONE = 'Z'; // (symbol)
4776
4777 // Date
4778 static final char NAME_OF_DAY_ABBREV = 'a'; // 'a'
4779 static final char NAME_OF_DAY = 'A'; // 'A'
4780 static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b'
4781 static final char NAME_OF_MONTH = 'B'; // 'B'
4782 static final char CENTURY = 'C'; // (00 - 99)
4783 static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31)
4784 static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d
4785 // * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V
4786 // * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V
4787 static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b
4788 static final char DAY_OF_YEAR = 'j'; // (001 - 366)
4789 static final char MONTH = 'm'; // (01 - 12)
4790 // * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday
4791 // * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+
4792 // * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4793 // * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday
4794 // * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday
4795 static final char YEAR_2 = 'y'; // (00 - 99)
4796 static final char YEAR_4 = 'Y'; // (0000 - 9999)
4797
4798 // Composites
4799 static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M)
4800 static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M)
4801 // * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format?
4802 static final char DATE_TIME = 'c';
4803 // (Sat Nov 04 12:02:33 EST 1999)
4804 static final char DATE = 'D'; // (mm/dd/yy)
4805 static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d)
4806 // * static final char LOCALE_DATE = 'x'; // (mm/dd/yy)
4807
4808 static boolean isValid(char c) {
4809 switch (c) {
4810 case HOUR_OF_DAY_0:
4811 case HOUR_0:
4812 case HOUR_OF_DAY:
4813 case HOUR:
4814 case MINUTE:
4815 case NANOSECOND:
4816 case MILLISECOND:
4817 case MILLISECOND_SINCE_EPOCH:
4818 case AM_PM:
4819 case SECONDS_SINCE_EPOCH:
4820 case SECOND:
4821 case TIME:
4822 case ZONE_NUMERIC:
4823 case ZONE:
4824
4825 // Date
4826 case NAME_OF_DAY_ABBREV:
4827 case NAME_OF_DAY:
4828 case NAME_OF_MONTH_ABBREV:
4829 case NAME_OF_MONTH:
4830 case CENTURY:
4831 case DAY_OF_MONTH_0:
4832 case DAY_OF_MONTH:
4833 // * case ISO_WEEK_OF_YEAR_2:
4834 // * case ISO_WEEK_OF_YEAR_4:
4835 case NAME_OF_MONTH_ABBREV_X:
4836 case DAY_OF_YEAR:
4837 case MONTH:
4838 // * case DAY_OF_WEEK_1:
4839 // * case WEEK_OF_YEAR_SUNDAY:
4840 // * case WEEK_OF_YEAR_MONDAY_01:
4841 // * case DAY_OF_WEEK_0:
4842 // * case WEEK_OF_YEAR_MONDAY:
4843 case YEAR_2:
4844 case YEAR_4:
4845
4846 // Composites
4847 case TIME_12_HOUR:
4848 case TIME_24_HOUR:
4849 // * case LOCALE_TIME:
4850 case DATE_TIME:
4851 case DATE:
4852 case ISO_STANDARD_DATE:
4853 // * case LOCALE_DATE:
4854 return true;
4855 default:
4856 return false;
4857 }
4858 }
4859 }
4860 }
4861