1 /*
2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */

25 package java.util.stream;
26
27 import java.util.Collections;
28 import java.util.EnumSet;
29 import java.util.Objects;
30 import java.util.Set;
31 import java.util.function.BiConsumer;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Function;
34 import java.util.function.Supplier;
35
36 /**
37  * A <a href="package-summary.html#Reduction">mutable reduction operation</a> that
38  * accumulates input elements into a mutable result container, optionally transforming
39  * the accumulated result into a final representation after all input elements
40  * have been processed.  Reduction operations can be performed either sequentially
41  * or in parallel.
42  *
43  * <p>Examples of mutable reduction operations include:
44  * accumulating elements into a {@code Collection}; concatenating
45  * strings using a {@code StringBuilder}; computing summary information about
46  * elements such as sum, min, max, or average; computing "pivot table" summaries
47  * such as "maximum valued transaction by seller", etc.  The class {@link Collectors}
48  * provides implementations of many common mutable reductions.
49  *
50  * <p>A {@code Collector} is specified by four functions that work together to
51  * accumulate entries into a mutable result container, and optionally perform
52  * a final transform on the result.  They are: <ul>
53  *     <li>creation of a new result container ({@link #supplier()})</li>
54  *     <li>incorporating a new data element into a result container ({@link #accumulator()})</li>
55  *     <li>combining two result containers into one ({@link #combiner()})</li>
56  *     <li>performing an optional final transform on the container ({@link #finisher()})</li>
57  * </ul>
58  *
59  * <p>Collectors also have a set of characteristics, such as
60  * {@link Characteristics#CONCURRENT}, that provide hints that can be used by a
61  * reduction implementation to provide better performance.
62  *
63  * <p>A sequential implementation of a reduction using a collector would
64  * create a single result container using the supplier function, and invoke the
65  * accumulator function once for each input element.  A parallel implementation
66  * would partition the input, create a result container for each partition,
67  * accumulate the contents of each partition into a subresult for that partition,
68  * and then use the combiner function to merge the subresults into a combined
69  * result.
70  *
71  * <p>To ensure that sequential and parallel executions produce equivalent
72  * results, the collector functions must satisfy an <em>identity</em> and an
73  * <a href="package-summary.html#Associativity">associativity</a> constraints.
74  *
75  * <p>The identity constraint says that for any partially accumulated result,
76  * combining it with an empty result container must produce an equivalent
77  * result.  That is, for a partially accumulated result {@code a} that is the
78  * result of any series of accumulator and combiner invocations, {@code a} must
79  * be equivalent to {@code combiner.apply(a, supplier.get())}.
80  *
81  * <p>The associativity constraint says that splitting the computation must
82  * produce an equivalent result.  That is, for any input elements {@code t1}
83  * and {@code t2}, the results {@code r1} and {@code r2} in the computation
84  * below must be equivalent:
85  * <pre>{@code
86  *     A a1 = supplier.get();
87  *     accumulator.accept(a1, t1);
88  *     accumulator.accept(a1, t2);
89  *     R r1 = finisher.apply(a1);  // result without splitting
90  *
91  *     A a2 = supplier.get();
92  *     accumulator.accept(a2, t1);
93  *     A a3 = supplier.get();
94  *     accumulator.accept(a3, t2);
95  *     R r2 = finisher.apply(combiner.apply(a2, a3));  // result with splitting
96  * } </pre>
97  *
98  * <p>For collectors that do not have the {@code UNORDERED} characteristic,
99  * two accumulated results {@code a1} and {@code a2} are equivalent if
100  * {@code finisher.apply(a1).equals(finisher.apply(a2))}.  For unordered
101  * collectors, equivalence is relaxed to allow for non-equality related to
102  * differences in order.  (For example, an unordered collector that accumulated
103  * elements to a {@code List} would consider two lists equivalent if they
104  * contained the same elements, ignoring order.)
105  *
106  * <p>Libraries that implement reduction based on {@code Collector}, such as
107  * {@link Stream#collect(Collector)}, must adhere to the following constraints:
108  * <ul>
109  *     <li>The first argument passed to the accumulator function, both
110  *     arguments passed to the combiner function, and the argument passed to the
111  *     finisher function must be the result of a previous invocation of the
112  *     result supplier, accumulator, or combiner functions.</li>
113  *     <li>The implementation should not do anything with the result of any of
114  *     the result supplier, accumulator, or combiner functions other than to
115  *     pass them again to the accumulator, combiner, or finisher functions,
116  *     or return them to the caller of the reduction operation.</li>
117  *     <li>If a result is passed to the combiner or finisher
118  *     function, and the same object is not returned from that function, it is
119  *     never used again.</li>
120  *     <li>Once a result is passed to the combiner or finisher function, it
121  *     is never passed to the accumulator function again.</li>
122  *     <li>For non-concurrent collectors, any result returned from the result
123  *     supplier, accumulator, or combiner functions must be serially
124  *     thread-confined.  This enables collection to occur in parallel without
125  *     the {@code Collector} needing to implement any additional synchronization.
126  *     The reduction implementation must manage that the input is properly
127  *     partitioned, that partitions are processed in isolation, and combining
128  *     happens only after accumulation is complete.</li>
129  *     <li>For concurrent collectors, an implementation is free to (but not
130  *     required to) implement reduction concurrently.  A concurrent reduction
131  *     is one where the accumulator function is called concurrently from
132  *     multiple threads, using the same concurrently-modifiable result container,
133  *     rather than keeping the result isolated during accumulation.
134  *     A concurrent reduction should only be applied if the collector has the
135  *     {@link Characteristics#UNORDERED} characteristics or if the
136  *     originating data is unordered.</li>
137  * </ul>
138  *
139  * <p>In addition to the predefined implementations in {@link Collectors}, the
140  * static factory methods {@link #of(Supplier, BiConsumer, BinaryOperator, Characteristics...)}
141  * can be used to construct collectors.  For example, you could create a collector
142  * that accumulates widgets into a {@code TreeSet} with:
143  *
144  * <pre>{@code
145  *     Collector<Widget, ?, TreeSet<Widget>> intoSet =
146  *         Collector.of(TreeSet::new, TreeSet::add,
147  *                      (left, right) -> { left.addAll(right); return left; });
148  * }</pre>
149  *
150  * (This behavior is also implemented by the predefined collector
151  * {@link Collectors#toCollection(Supplier)}).
152  *
153  * @apiNote
154  * Performing a reduction operation with a {@code Collector} should produce a
155  * result equivalent to:
156  * <pre>{@code
157  *     R container = collector.supplier().get();
158  *     for (T t : data)
159  *         collector.accumulator().accept(container, t);
160  *     return collector.finisher().apply(container);
161  * }</pre>
162  *
163  * <p>However, the library is free to partition the input, perform the reduction
164  * on the partitions, and then use the combiner function to combine the partial
165  * results to achieve a parallel reduction.  (Depending on the specific reduction
166  * operation, this may perform better or worse, depending on the relative cost
167  * of the accumulator and combiner functions.)
168  *
169  * <p>Collectors are designed to be <em>composed</em>; many of the methods
170  * in {@link Collectors} are functions that take a collector and produce
171  * a new collector.  For example, given the following collector that computes
172  * the sum of the salaries of a stream of employees:
173  *
174  * <pre>{@code
175  *     Collector<Employee, ?, Integer> summingSalaries
176  *         = Collectors.summingInt(Employee::getSalary))
177  * }</pre>
178  *
179  * If we wanted to create a collector to tabulate the sum of salaries by
180  * department, we could reuse the "sum of salaries" logic using
181  * {@link Collectors#groupingBy(Function, Collector)}:
182  *
183  * <pre>{@code
184  *     Collector<Employee, ?, Map<Department, Integer>> summingSalariesByDept
185  *         = Collectors.groupingBy(Employee::getDepartment, summingSalaries);
186  * }</pre>
187  *
188  * @see Stream#collect(Collector)
189  * @see Collectors
190  *
191  * @param <T> the type of input elements to the reduction operation
192  * @param <A> the mutable accumulation type of the reduction operation (often
193  *            hidden as an implementation detail)
194  * @param <R> the result type of the reduction operation
195  * @since 1.8
196  */

197 public interface Collector<T, A, R> {
198     /**
199      * A function that creates and returns a new mutable result container.
200      *
201      * @return a function which returns a new, mutable result container
202      */

203     Supplier<A> supplier();
204
205     /**
206      * A function that folds a value into a mutable result container.
207      *
208      * @return a function which folds a value into a mutable result container
209      */

210     BiConsumer<A, T> accumulator();
211
212     /**
213      * A function that accepts two partial results and merges them.  The
214      * combiner function may fold state from one argument into the other and
215      * return that, or may return a new result container.
216      *
217      * @return a function which combines two partial results into a combined
218      * result
219      */

220     BinaryOperator<A> combiner();
221
222     /**
223      * Perform the final transformation from the intermediate accumulation type
224      * {@code A} to the final result type {@code R}.
225      *
226      * <p>If the characteristic {@code IDENTITY_FINISH} is
227      * set, this function may be presumed to be an identity transform with an
228      * unchecked cast from {@code A} to {@code R}.
229      *
230      * @return a function which transforms the intermediate result to the final
231      * result
232      */

233     Function<A, R> finisher();
234
235     /**
236      * Returns a {@code Set} of {@code Collector.Characteristics} indicating
237      * the characteristics of this Collector.  This set should be immutable.
238      *
239      * @return an immutable set of collector characteristics
240      */

241     Set<Characteristics> characteristics();
242
243     /**
244      * Returns a new {@code Collector} described by the given {@code supplier},
245      * {@code accumulator}, and {@code combiner} functions.  The resulting
246      * {@code Collector} has the {@code Collector.Characteristics.IDENTITY_FINISH}
247      * characteristic.
248      *
249      * @param supplier The supplier function for the new collector
250      * @param accumulator The accumulator function for the new collector
251      * @param combiner The combiner function for the new collector
252      * @param characteristics The collector characteristics for the new
253      *                        collector
254      * @param <T> The type of input elements for the new collector
255      * @param <R> The type of intermediate accumulation result, and final result,
256      *           for the new collector
257      * @throws NullPointerException if any argument is null
258      * @return the new {@code Collector}
259      */

260     public static<T, R> Collector<T, R, R> of(Supplier<R> supplier,
261                                               BiConsumer<R, T> accumulator,
262                                               BinaryOperator<R> combiner,
263                                               Characteristics... characteristics) {
264         Objects.requireNonNull(supplier);
265         Objects.requireNonNull(accumulator);
266         Objects.requireNonNull(combiner);
267         Objects.requireNonNull(characteristics);
268         Set<Characteristics> cs = (characteristics.length == 0)
269                                   ? Collectors.CH_ID
270                                   : Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH,
271                                                                            characteristics));
272         return new Collectors.CollectorImpl<>(supplier, accumulator, combiner, cs);
273     }
274
275     /**
276      * Returns a new {@code Collector} described by the given {@code supplier},
277      * {@code accumulator}, {@code combiner}, and {@code finisher} functions.
278      *
279      * @param supplier The supplier function for the new collector
280      * @param accumulator The accumulator function for the new collector
281      * @param combiner The combiner function for the new collector
282      * @param finisher The finisher function for the new collector
283      * @param characteristics The collector characteristics for the new
284      *                        collector
285      * @param <T> The type of input elements for the new collector
286      * @param <A> The intermediate accumulation type of the new collector
287      * @param <R> The final result type of the new collector
288      * @throws NullPointerException if any argument is null
289      * @return the new {@code Collector}
290      */

291     public static<T, A, R> Collector<T, A, R> of(Supplier<A> supplier,
292                                                  BiConsumer<A, T> accumulator,
293                                                  BinaryOperator<A> combiner,
294                                                  Function<A, R> finisher,
295                                                  Characteristics... characteristics) {
296         Objects.requireNonNull(supplier);
297         Objects.requireNonNull(accumulator);
298         Objects.requireNonNull(combiner);
299         Objects.requireNonNull(finisher);
300         Objects.requireNonNull(characteristics);
301         Set<Characteristics> cs = Collectors.CH_NOID;
302         if (characteristics.length > 0) {
303             cs = EnumSet.noneOf(Characteristics.class);
304             Collections.addAll(cs, characteristics);
305             cs = Collections.unmodifiableSet(cs);
306         }
307         return new Collectors.CollectorImpl<>(supplier, accumulator, combiner, finisher, cs);
308     }
309
310     /**
311      * Characteristics indicating properties of a {@code Collector}, which can
312      * be used to optimize reduction implementations.
313      */

314     enum Characteristics {
315         /**
316          * Indicates that this collector is <em>concurrent</em>, meaning that
317          * the result container can support the accumulator function being
318          * called concurrently with the same result container from multiple
319          * threads.
320          *
321          * <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED},
322          * then it should only be evaluated concurrently if applied to an
323          * unordered data source.
324          */

325         CONCURRENT,
326
327         /**
328          * Indicates that the collection operation does not commit to preserving
329          * the encounter order of input elements.  (This might be true if the
330          * result container has no intrinsic order, such as a {@link Set}.)
331          */

332         UNORDERED,
333
334         /**
335          * Indicates that the finisher function is the identity function and
336          * can be elided.  If set, it must be the case that an unchecked cast
337          * from A to R will succeed.
338          */

339         IDENTITY_FINISH
340     }
341 }
342