1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */

24
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea and Martin Buchholz with assistance from members of
32  * JCP JSR-166 Expert Group and released to the public domain, as explained
33  * at http://creativecommons.org/publicdomain/zero/1.0/
34  */

35
36 package java.util.concurrent;
37
38 import java.lang.invoke.MethodHandles;
39 import java.lang.invoke.VarHandle;
40 import java.util.AbstractQueue;
41 import java.util.Arrays;
42 import java.util.Collection;
43 import java.util.Iterator;
44 import java.util.NoSuchElementException;
45 import java.util.Objects;
46 import java.util.Queue;
47 import java.util.Spliterator;
48 import java.util.Spliterators;
49 import java.util.function.Consumer;
50 import java.util.function.Predicate;
51
52 /**
53  * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
54  * This queue orders elements FIFO (first-in-first-out).
55  * The <em>head</em> of the queue is that element that has been on the
56  * queue the longest time.
57  * The <em>tail</em> of the queue is that element that has been on the
58  * queue the shortest time. New elements
59  * are inserted at the tail of the queue, and the queue retrieval
60  * operations obtain elements at the head of the queue.
61  * A {@code ConcurrentLinkedQueue} is an appropriate choice when
62  * many threads will share access to a common collection.
63  * Like most other concurrent collection implementations, this class
64  * does not permit the use of {@code null} elements.
65  *
66  * <p>This implementation employs an efficient <em>non-blocking</em>
67  * algorithm based on one described in
68  * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
69  * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
70  * Algorithms</a> by Maged M. Michael and Michael L. Scott.
71  *
72  * <p>Iterators are <i>weakly consistent</i>, returning elements
73  * reflecting the state of the queue at some point at or since the
74  * creation of the iterator.  They do <em>not</em> throw {@link
75  * java.util.ConcurrentModificationException}, and may proceed concurrently
76  * with other operations.  Elements contained in the queue since the creation
77  * of the iterator will be returned exactly once.
78  *
79  * <p>Beware that, unlike in most collections, the {@code size} method
80  * is <em>NOT</em> a constant-time operation. Because of the
81  * asynchronous nature of these queues, determining the current number
82  * of elements requires a traversal of the elements, and so may report
83  * inaccurate results if this collection is modified during traversal.
84  *
85  * <p>Bulk operations that add, remove, or examine multiple elements,
86  * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
87  * are <em>not</em> guaranteed to be performed atomically.
88  * For example, a {@code forEach} traversal concurrent with an {@code
89  * addAll} operation might observe only some of the added elements.
90  *
91  * <p>This class and its iterator implement all of the <em>optional</em>
92  * methods of the {@link Queue} and {@link Iterator} interfaces.
93  *
94  * <p>Memory consistency effects: As with other concurrent
95  * collections, actions in a thread prior to placing an object into a
96  * {@code ConcurrentLinkedQueue}
97  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
98  * actions subsequent to the access or removal of that element from
99  * the {@code ConcurrentLinkedQueue} in another thread.
100  *
101  * <p>This class is a member of the
102  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
103  * Java Collections Framework</a>.
104  *
105  * @since 1.5
106  * @author Doug Lea
107  * @param <E> the type of elements held in this queue
108  */

109 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
110         implements Queue<E>, java.io.Serializable {
111     private static final long serialVersionUID = 196745693267521676L;
112
113     /*
114      * This is a modification of the Michael & Scott algorithm,
115      * adapted for a garbage-collected environment, with support for
116      * interior node deletion (to support e.g. remove(Object)).  For
117      * explanation, read the paper.
118      *
119      * Note that like most non-blocking algorithms in this package,
120      * this implementation relies on the fact that in garbage
121      * collected systems, there is no possibility of ABA problems due
122      * to recycled nodes, so there is no need to use "counted
123      * pointers" or related techniques seen in versions used in
124      * non-GC'ed settings.
125      *
126      * The fundamental invariants are:
127      * - There is exactly one (last) Node with a null next reference,
128      *   which is CASed when enqueueing.  This last Node can be
129      *   reached in O(1) time from tail, but tail is merely an
130      *   optimization - it can always be reached in O(N) time from
131      *   head as well.
132      * - The elements contained in the queue are the non-null items in
133      *   Nodes that are reachable from head.  CASing the item
134      *   reference of a Node to null atomically removes it from the
135      *   queue.  Reachability of all elements from head must remain
136      *   true even in the case of concurrent modifications that cause
137      *   head to advance.  A dequeued Node may remain in use
138      *   indefinitely due to creation of an Iterator or simply a
139      *   poll() that has lost its time slice.
140      *
141      * The above might appear to imply that all Nodes are GC-reachable
142      * from a predecessor dequeued Node.  That would cause two problems:
143      * - allow a rogue Iterator to cause unbounded memory retention
144      * - cause cross-generational linking of old Nodes to new Nodes if
145      *   a Node was tenured while live, which generational GCs have a
146      *   hard time dealing with, causing repeated major collections.
147      * However, only non-deleted Nodes need to be reachable from
148      * dequeued Nodes, and reachability does not necessarily have to
149      * be of the kind understood by the GC.  We use the trick of
150      * linking a Node that has just been dequeued to itself.  Such a
151      * self-link implicitly means to advance to head.
152      *
153      * Both head and tail are permitted to lag.  In fact, failing to
154      * update them every time one could is a significant optimization
155      * (fewer CASes). As with LinkedTransferQueue (see the internal
156      * documentation for that class), we use a slack threshold of two;
157      * that is, we update head/tail when the current pointer appears
158      * to be two or more steps away from the first/last node.
159      *
160      * Since head and tail are updated concurrently and independently,
161      * it is possible for tail to lag behind head (why not)?
162      *
163      * CASing a Node's item reference to null atomically removes the
164      * element from the queue, leaving a "dead" node that should later
165      * be unlinked (but unlinking is merely an optimization).
166      * Interior element removal methods (other than Iterator.remove())
167      * keep track of the predecessor node during traversal so that the
168      * node can be CAS-unlinked.  Some traversal methods try to unlink
169      * any deleted nodes encountered during traversal.  See comments
170      * in bulkRemove.
171      *
172      * When constructing a Node (before enqueuing it) we avoid paying
173      * for a volatile write to item.  This allows the cost of enqueue
174      * to be "one-and-a-half" CASes.
175      *
176      * Both head and tail may or may not point to a Node with a
177      * non-null item.  If the queue is empty, all items must of course
178      * be null.  Upon creation, both head and tail refer to a dummy
179      * Node with null item.  Both head and tail are only updated using
180      * CAS, so they never regress, although again this is merely an
181      * optimization.
182      */

183
184     static final class Node<E> {
185         volatile E item;
186         volatile Node<E> next;
187
188         /**
189          * Constructs a node holding item.  Uses relaxed write because
190          * item can only be seen after piggy-backing publication via CAS.
191          */

192         Node(E item) {
193             ITEM.set(this, item);
194         }
195
196         /** Constructs a dead dummy node. */
197         Node() {}
198
199         void appendRelaxed(Node<E> next) {
200             // assert next != null;
201             // assert this.next == null;
202             NEXT.set(this, next);
203         }
204
205         boolean casItem(E cmp, E val) {
206             // assert item == cmp || item == null;
207             // assert cmp != null;
208             // assert val == null;
209             return ITEM.compareAndSet(this, cmp, val);
210         }
211     }
212
213     /**
214      * A node from which the first live (non-deleted) node (if any)
215      * can be reached in O(1) time.
216      * Invariants:
217      * - all live nodes are reachable from head via succ()
218      * - head != null
219      * - (tmp = head).next != tmp || tmp != head
220      * Non-invariants:
221      * - head.item may or may not be null.
222      * - it is permitted for tail to lag behind head, that is, for tail
223      *   to not be reachable from head!
224      */

225     transient volatile Node<E> head;
226
227     /**
228      * A node from which the last node on list (that is, the unique
229      * node with node.next == null) can be reached in O(1) time.
230      * Invariants:
231      * - the last node is always reachable from tail via succ()
232      * - tail != null
233      * Non-invariants:
234      * - tail.item may or may not be null.
235      * - it is permitted for tail to lag behind head, that is, for tail
236      *   to not be reachable from head!
237      * - tail.next may or may not be self-linked.
238      */

239     private transient volatile Node<E> tail;
240
241     /**
242      * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
243      */

244     public ConcurrentLinkedQueue() {
245         head = tail = new Node<E>();
246     }
247
248     /**
249      * Creates a {@code ConcurrentLinkedQueue}
250      * initially containing the elements of the given collection,
251      * added in traversal order of the collection's iterator.
252      *
253      * @param c the collection of elements to initially contain
254      * @throws NullPointerException if the specified collection or any
255      *         of its elements are null
256      */

257     public ConcurrentLinkedQueue(Collection<? extends E> c) {
258         Node<E> h = null, t = null;
259         for (E e : c) {
260             Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
261             if (h == null)
262                 h = t = newNode;
263             else
264                 t.appendRelaxed(t = newNode);
265         }
266         if (h == null)
267             h = t = new Node<E>();
268         head = h;
269         tail = t;
270     }
271
272     // Have to override just to update the javadoc
273
274     /**
275      * Inserts the specified element at the tail of this queue.
276      * As the queue is unbounded, this method will never throw
277      * {@link IllegalStateException} or return {@code false}.
278      *
279      * @return {@code true} (as specified by {@link Collection#add})
280      * @throws NullPointerException if the specified element is null
281      */

282     public boolean add(E e) {
283         return offer(e);
284     }
285
286     /**
287      * Tries to CAS head to p. If successful, repoint old head to itself
288      * as sentinel for succ(), below.
289      */

290     final void updateHead(Node<E> h, Node<E> p) {
291         // assert h != null && p != null && (h == p || h.item == null);
292         if (h != p && HEAD.compareAndSet(this, h, p))
293             NEXT.setRelease(h, h);
294     }
295
296     /**
297      * Returns the successor of p, or the head node if p.next has been
298      * linked to self, which will only be true if traversing with a
299      * stale pointer that is now off the list.
300      */

301     final Node<E> succ(Node<E> p) {
302         if (p == (p = p.next))
303             p = head;
304         return p;
305     }
306
307     /**
308      * Tries to CAS pred.next (or head, if pred is null) from c to p.
309      * Caller must ensure that we're not unlinking the trailing node.
310      */

311     private boolean tryCasSuccessor(Node<E> pred, Node<E> c, Node<E> p) {
312         // assert p != null;
313         // assert c.item == null;
314         // assert c != p;
315         if (pred != null)
316             return NEXT.compareAndSet(pred, c, p);
317         if (HEAD.compareAndSet(this, c, p)) {
318             NEXT.setRelease(c, c);
319             return true;
320         }
321         return false;
322     }
323
324     /**
325      * Collapse dead nodes between pred and q.
326      * @param pred the last known live node, or null if none
327      * @param c the first dead node
328      * @param p the last dead node
329      * @param q p.next: the next live node, or null if at end
330      * @return either old pred or p if pred dead or CAS failed
331      */

332     private Node<E> skipDeadNodes(Node<E> pred, Node<E> c, Node<E> p, Node<E> q) {
333         // assert pred != c;
334         // assert p != q;
335         // assert c.item == null;
336         // assert p.item == null;
337         if (q == null) {
338             // Never unlink trailing node.
339             if (c == p) return pred;
340             q = p;
341         }
342         return (tryCasSuccessor(pred, c, q)
343                 && (pred == null || ITEM.get(pred) != null))
344             ? pred : p;
345     }
346
347     /**
348      * Inserts the specified element at the tail of this queue.
349      * As the queue is unbounded, this method will never return {@code false}.
350      *
351      * @return {@code true} (as specified by {@link Queue#offer})
352      * @throws NullPointerException if the specified element is null
353      */

354     public boolean offer(E e) {
355         final Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
356
357         for (Node<E> t = tail, p = t;;) {
358             Node<E> q = p.next;
359             if (q == null) {
360                 // p is last node
361                 if (NEXT.compareAndSet(p, null, newNode)) {
362                     // Successful CAS is the linearization point
363                     // for e to become an element of this queue,
364                     // and for newNode to become "live".
365                     if (p != t) // hop two nodes at a time; failure is OK
366                         TAIL.weakCompareAndSet(this, t, newNode);
367                     return true;
368                 }
369                 // Lost CAS race to another thread; re-read next
370             }
371             else if (p == q)
372                 // We have fallen off list.  If tail is unchanged, it
373                 // will also be off-list, in which case we need to
374                 // jump to head, from which all live nodes are always
375                 // reachable.  Else the new tail is a better bet.
376                 p = (t != (t = tail)) ? t : head;
377             else
378                 // Check for tail updates after two hops.
379                 p = (p != t && t != (t = tail)) ? t : q;
380         }
381     }
382
383     public E poll() {
384         restartFromHead: for (;;) {
385             for (Node<E> h = head, p = h, q;; p = q) {
386                 final E item;
387                 if ((item = p.item) != null && p.casItem(item, null)) {
388                     // Successful CAS is the linearization point
389                     // for item to be removed from this queue.
390                     if (p != h) // hop two nodes at a time
391                         updateHead(h, ((q = p.next) != null) ? q : p);
392                     return item;
393                 }
394                 else if ((q = p.next) == null) {
395                     updateHead(h, p);
396                     return null;
397                 }
398                 else if (p == q)
399                     continue restartFromHead;
400             }
401         }
402     }
403
404     public E peek() {
405         restartFromHead: for (;;) {
406             for (Node<E> h = head, p = h, q;; p = q) {
407                 final E item;
408                 if ((item = p.item) != null
409                     || (q = p.next) == null) {
410                     updateHead(h, p);
411                     return item;
412                 }
413                 else if (p == q)
414                     continue restartFromHead;
415             }
416         }
417     }
418
419     /**
420      * Returns the first live (non-deleted) node on list, or null if none.
421      * This is yet another variant of poll/peek; here returning the
422      * first node, not element.  We could make peek() a wrapper around
423      * first(), but that would cost an extra volatile read of item,
424      * and the need to add a retry loop to deal with the possibility
425      * of losing a race to a concurrent poll().
426      */

427     Node<E> first() {
428         restartFromHead: for (;;) {
429             for (Node<E> h = head, p = h, q;; p = q) {
430                 boolean hasItem = (p.item != null);
431                 if (hasItem || (q = p.next) == null) {
432                     updateHead(h, p);
433                     return hasItem ? p : null;
434                 }
435                 else if (p == q)
436                     continue restartFromHead;
437             }
438         }
439     }
440
441     /**
442      * Returns {@code trueif this queue contains no elements.
443      *
444      * @return {@code trueif this queue contains no elements
445      */

446     public boolean isEmpty() {
447         return first() == null;
448     }
449
450     /**
451      * Returns the number of elements in this queue.  If this queue
452      * contains more than {@code Integer.MAX_VALUE} elements, returns
453      * {@code Integer.MAX_VALUE}.
454      *
455      * <p>Beware that, unlike in most collections, this method is
456      * <em>NOT</em> a constant-time operation. Because of the
457      * asynchronous nature of these queues, determining the current
458      * number of elements requires an O(n) traversal.
459      * Additionally, if elements are added or removed during execution
460      * of this method, the returned result may be inaccurate.  Thus,
461      * this method is typically not very useful in concurrent
462      * applications.
463      *
464      * @return the number of elements in this queue
465      */

466     public int size() {
467         restartFromHead: for (;;) {
468             int count = 0;
469             for (Node<E> p = first(); p != null;) {
470                 if (p.item != null)
471                     if (++count == Integer.MAX_VALUE)
472                         break;  // @see Collection.size()
473                 if (p == (p = p.next))
474                     continue restartFromHead;
475             }
476             return count;
477         }
478     }
479
480     /**
481      * Returns {@code trueif this queue contains the specified element.
482      * More formally, returns {@code trueif and only if this queue contains
483      * at least one element {@code e} such that {@code o.equals(e)}.
484      *
485      * @param o object to be checked for containment in this queue
486      * @return {@code trueif this queue contains the specified element
487      */

488     public boolean contains(Object o) {
489         if (o == nullreturn false;
490         restartFromHead: for (;;) {
491             for (Node<E> p = head, pred = null; p != null; ) {
492                 Node<E> q = p.next;
493                 final E item;
494                 if ((item = p.item) != null) {
495                     if (o.equals(item))
496                         return true;
497                     pred = p; p = q; continue;
498                 }
499                 for (Node<E> c = p;; q = p.next) {
500                     if (q == null || q.item != null) {
501                         pred = skipDeadNodes(pred, c, p, q); p = q; break;
502                     }
503                     if (p == (p = q)) continue restartFromHead;
504                 }
505             }
506             return false;
507         }
508     }
509
510     /**
511      * Removes a single instance of the specified element from this queue,
512      * if it is present.  More formally, removes an element {@code e} such
513      * that {@code o.equals(e)}, if this queue contains one or more such
514      * elements.
515      * Returns {@code trueif this queue contained the specified element
516      * (or equivalently, if this queue changed as a result of the call).
517      *
518      * @param o element to be removed from this queue, if present
519      * @return {@code trueif this queue changed as a result of the call
520      */

521     public boolean remove(Object o) {
522         if (o == nullreturn false;
523         restartFromHead: for (;;) {
524             for (Node<E> p = head, pred = null; p != null; ) {
525                 Node<E> q = p.next;
526                 final E item;
527                 if ((item = p.item) != null) {
528                     if (o.equals(item) && p.casItem(item, null)) {
529                         skipDeadNodes(pred, p, p, q);
530                         return true;
531                     }
532                     pred = p; p = q; continue;
533                 }
534                 for (Node<E> c = p;; q = p.next) {
535                     if (q == null || q.item != null) {
536                         pred = skipDeadNodes(pred, c, p, q); p = q; break;
537                     }
538                     if (p == (p = q)) continue restartFromHead;
539                 }
540             }
541             return false;
542         }
543     }
544
545     /**
546      * Appends all of the elements in the specified collection to the end of
547      * this queue, in the order that they are returned by the specified
548      * collection's iterator.  Attempts to {@code addAll} of a queue to
549      * itself result in {@code IllegalArgumentException}.
550      *
551      * @param c the elements to be inserted into this queue
552      * @return {@code trueif this queue changed as a result of the call
553      * @throws NullPointerException if the specified collection or any
554      *         of its elements are null
555      * @throws IllegalArgumentException if the collection is this queue
556      */

557     public boolean addAll(Collection<? extends E> c) {
558         if (c == this)
559             // As historically specified in AbstractQueue#addAll
560             throw new IllegalArgumentException();
561
562         // Copy c into a private chain of Nodes
563         Node<E> beginningOfTheEnd = null, last = null;
564         for (E e : c) {
565             Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
566             if (beginningOfTheEnd == null)
567                 beginningOfTheEnd = last = newNode;
568             else
569                 last.appendRelaxed(last = newNode);
570         }
571         if (beginningOfTheEnd == null)
572             return false;
573
574         // Atomically append the chain at the tail of this collection
575         for (Node<E> t = tail, p = t;;) {
576             Node<E> q = p.next;
577             if (q == null) {
578                 // p is last node
579                 if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
580                     // Successful CAS is the linearization point
581                     // for all elements to be added to this queue.
582                     if (!TAIL.weakCompareAndSet(this, t, last)) {
583                         // Try a little harder to update tail,
584                         // since we may be adding many elements.
585                         t = tail;
586                         if (last.next == null)
587                             TAIL.weakCompareAndSet(this, t, last);
588                     }
589                     return true;
590                 }
591                 // Lost CAS race to another thread; re-read next
592             }
593             else if (p == q)
594                 // We have fallen off list.  If tail is unchanged, it
595                 // will also be off-list, in which case we need to
596                 // jump to head, from which all live nodes are always
597                 // reachable.  Else the new tail is a better bet.
598                 p = (t != (t = tail)) ? t : head;
599             else
600                 // Check for tail updates after two hops.
601                 p = (p != t && t != (t = tail)) ? t : q;
602         }
603     }
604
605     public String toString() {
606         String[] a = null;
607         restartFromHead: for (;;) {
608             int charLength = 0;
609             int size = 0;
610             for (Node<E> p = first(); p != null;) {
611                 final E item;
612                 if ((item = p.item) != null) {
613                     if (a == null)
614                         a = new String[4];
615                     else if (size == a.length)
616                         a = Arrays.copyOf(a, 2 * size);
617                     String s = item.toString();
618                     a[size++] = s;
619                     charLength += s.length();
620                 }
621                 if (p == (p = p.next))
622                     continue restartFromHead;
623             }
624
625             if (size == 0)
626                 return "[]";
627
628             return Helpers.toString(a, size, charLength);
629         }
630     }
631
632     private Object[] toArrayInternal(Object[] a) {
633         Object[] x = a;
634         restartFromHead: for (;;) {
635             int size = 0;
636             for (Node<E> p = first(); p != null;) {
637                 final E item;
638                 if ((item = p.item) != null) {
639                     if (x == null)
640                         x = new Object[4];
641                     else if (size == x.length)
642                         x = Arrays.copyOf(x, 2 * (size + 4));
643                     x[size++] = item;
644                 }
645                 if (p == (p = p.next))
646                     continue restartFromHead;
647             }
648             if (x == null)
649                 return new Object[0];
650             else if (a != null && size <= a.length) {
651                 if (a != x)
652                     System.arraycopy(x, 0, a, 0, size);
653                 if (size < a.length)
654                     a[size] = null;
655                 return a;
656             }
657             return (size == x.length) ? x : Arrays.copyOf(x, size);
658         }
659     }
660
661     /**
662      * Returns an array containing all of the elements in this queue, in
663      * proper sequence.
664      *
665      * <p>The returned array will be "safe" in that no references to it are
666      * maintained by this queue.  (In other words, this method must allocate
667      * a new array).  The caller is thus free to modify the returned array.
668      *
669      * <p>This method acts as bridge between array-based and collection-based
670      * APIs.
671      *
672      * @return an array containing all of the elements in this queue
673      */

674     public Object[] toArray() {
675         return toArrayInternal(null);
676     }
677
678     /**
679      * Returns an array containing all of the elements in this queue, in
680      * proper sequence; the runtime type of the returned array is that of
681      * the specified array.  If the queue fits in the specified array, it
682      * is returned therein.  Otherwise, a new array is allocated with the
683      * runtime type of the specified array and the size of this queue.
684      *
685      * <p>If this queue fits in the specified array with room to spare
686      * (i.e., the array has more elements than this queue), the element in
687      * the array immediately following the end of the queue is set to
688      * {@code null}.
689      *
690      * <p>Like the {@link #toArray()} method, this method acts as bridge between
691      * array-based and collection-based APIs.  Further, this method allows
692      * precise control over the runtime type of the output array, and may,
693      * under certain circumstances, be used to save allocation costs.
694      *
695      * <p>Suppose {@code x} is a queue known to contain only strings.
696      * The following code can be used to dump the queue into a newly
697      * allocated array of {@code String}:
698      *
699      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
700      *
701      * Note that {@code toArray(new Object[0])} is identical in function to
702      * {@code toArray()}.
703      *
704      * @param a the array into which the elements of the queue are to
705      *          be stored, if it is big enough; otherwise, a new array of the
706      *          same runtime type is allocated for this purpose
707      * @return an array containing all of the elements in this queue
708      * @throws ArrayStoreException if the runtime type of the specified array
709      *         is not a supertype of the runtime type of every element in
710      *         this queue
711      * @throws NullPointerException if the specified array is null
712      */

713     @SuppressWarnings("unchecked")
714     public <T> T[] toArray(T[] a) {
715         Objects.requireNonNull(a);
716         return (T[]) toArrayInternal(a);
717     }
718
719     /**
720      * Returns an iterator over the elements in this queue in proper sequence.
721      * The elements will be returned in order from first (head) to last (tail).
722      *
723      * <p>The returned iterator is
724      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
725      *
726      * @return an iterator over the elements in this queue in proper sequence
727      */

728     public Iterator<E> iterator() {
729         return new Itr();
730     }
731
732     private class Itr implements Iterator<E> {
733         /**
734          * Next node to return item for.
735          */

736         private Node<E> nextNode;
737
738         /**
739          * nextItem holds on to item fields because once we claim
740          * that an element exists in hasNext(), we must return it in
741          * the following next() call even if it was in the process of
742          * being removed when hasNext() was called.
743          */

744         private E nextItem;
745
746         /**
747          * Node of the last returned item, to support remove.
748          */

749         private Node<E> lastRet;
750
751         Itr() {
752             restartFromHead: for (;;) {
753                 Node<E> h, p, q;
754                 for (p = h = head;; p = q) {
755                     final E item;
756                     if ((item = p.item) != null) {
757                         nextNode = p;
758                         nextItem = item;
759                         break;
760                     }
761                     else if ((q = p.next) == null)
762                         break;
763                     else if (p == q)
764                         continue restartFromHead;
765                 }
766                 updateHead(h, p);
767                 return;
768             }
769         }
770
771         public boolean hasNext() {
772             return nextItem != null;
773         }
774
775         public E next() {
776             final Node<E> pred = nextNode;
777             if (pred == nullthrow new NoSuchElementException();
778             // assert nextItem != null;
779             lastRet = pred;
780             E item = null;
781
782             for (Node<E> p = succ(pred), q;; p = q) {
783                 if (p == null || (item = p.item) != null) {
784                     nextNode = p;
785                     E x = nextItem;
786                     nextItem = item;
787                     return x;
788                 }
789                 // unlink deleted nodes
790                 if ((q = succ(p)) != null)
791                     NEXT.compareAndSet(pred, p, q);
792             }
793         }
794
795         // Default implementation of forEachRemaining is "good enough".
796
797         public void remove() {
798             Node<E> l = lastRet;
799             if (l == nullthrow new IllegalStateException();
800             // rely on a future traversal to relink.
801             l.item = null;
802             lastRet = null;
803         }
804     }
805
806     /**
807      * Saves this queue to a stream (that is, serializes it).
808      *
809      * @param s the stream
810      * @throws java.io.IOException if an I/O error occurs
811      * @serialData All of the elements (each an {@code E}) in
812      * the proper order, followed by a null
813      */

814     private void writeObject(java.io.ObjectOutputStream s)
815         throws java.io.IOException {
816
817         // Write out any hidden stuff
818         s.defaultWriteObject();
819
820         // Write out all elements in the proper order.
821         for (Node<E> p = first(); p != null; p = succ(p)) {
822             final E item;
823             if ((item = p.item) != null)
824                 s.writeObject(item);
825         }
826
827         // Use trailing null as sentinel
828         s.writeObject(null);
829     }
830
831     /**
832      * Reconstitutes this queue from a stream (that is, deserializes it).
833      * @param s the stream
834      * @throws ClassNotFoundException if the class of a serialized object
835      *         could not be found
836      * @throws java.io.IOException if an I/O error occurs
837      */

838     private void readObject(java.io.ObjectInputStream s)
839         throws java.io.IOException, ClassNotFoundException {
840         s.defaultReadObject();
841
842         // Read in elements until trailing null sentinel found
843         Node<E> h = null, t = null;
844         for (Object item; (item = s.readObject()) != null; ) {
845             @SuppressWarnings("unchecked")
846             Node<E> newNode = new Node<E>((E) item);
847             if (h == null)
848                 h = t = newNode;
849             else
850                 t.appendRelaxed(t = newNode);
851         }
852         if (h == null)
853             h = t = new Node<E>();
854         head = h;
855         tail = t;
856     }
857
858     /** A customized variant of Spliterators.IteratorSpliterator */
859     final class CLQSpliterator implements Spliterator<E> {
860         static final int MAX_BATCH = 1 << 25;  // max batch array size;
861         Node<E> current;    // current node; null until initialized
862         int batch;          // batch size for splits
863         boolean exhausted;  // true when no more nodes
864
865         public Spliterator<E> trySplit() {
866             Node<E> p, q;
867             if ((p = current()) == null || (q = p.next) == null)
868                 return null;
869             int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
870             Object[] a = null;
871             do {
872                 final E e;
873                 if ((e = p.item) != null) {
874                     if (a == null)
875                         a = new Object[n];
876                     a[i++] = e;
877                 }
878                 if (p == (p = q))
879                     p = first();
880             } while (p != null && (q = p.next) != null && i < n);
881             setCurrent(p);
882             return (i == 0) ? null :
883                 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
884                                                    Spliterator.NONNULL |
885                                                    Spliterator.CONCURRENT));
886         }
887
888         public void forEachRemaining(Consumer<? super E> action) {
889             Objects.requireNonNull(action);
890             final Node<E> p;
891             if ((p = current()) != null) {
892                 current = null;
893                 exhausted = true;
894                 forEachFrom(action, p);
895             }
896         }
897
898         public boolean tryAdvance(Consumer<? super E> action) {
899             Objects.requireNonNull(action);
900             Node<E> p;
901             if ((p = current()) != null) {
902                 E e;
903                 do {
904                     e = p.item;
905                     if (p == (p = p.next))
906                         p = first();
907                 } while (e == null && p != null);
908                 setCurrent(p);
909                 if (e != null) {
910                     action.accept(e);
911                     return true;
912                 }
913             }
914             return false;
915         }
916
917         private void setCurrent(Node<E> p) {
918             if ((current = p) == null)
919                 exhausted = true;
920         }
921
922         private Node<E> current() {
923             Node<E> p;
924             if ((p = current) == null && !exhausted)
925                 setCurrent(p = first());
926             return p;
927         }
928
929         public long estimateSize() { return Long.MAX_VALUE; }
930
931         public int characteristics() {
932             return (Spliterator.ORDERED |
933                     Spliterator.NONNULL |
934                     Spliterator.CONCURRENT);
935         }
936     }
937
938     /**
939      * Returns a {@link Spliterator} over the elements in this queue.
940      *
941      * <p>The returned spliterator is
942      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
943      *
944      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
945      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
946      *
947      * @implNote
948      * The {@code Spliterator} implements {@code trySplit} to permit limited
949      * parallelism.
950      *
951      * @return a {@code Spliterator} over the elements in this queue
952      * @since 1.8
953      */

954     @Override
955     public Spliterator<E> spliterator() {
956         return new CLQSpliterator();
957     }
958
959     /**
960      * @throws NullPointerException {@inheritDoc}
961      */

962     public boolean removeIf(Predicate<? super E> filter) {
963         Objects.requireNonNull(filter);
964         return bulkRemove(filter);
965     }
966
967     /**
968      * @throws NullPointerException {@inheritDoc}
969      */

970     public boolean removeAll(Collection<?> c) {
971         Objects.requireNonNull(c);
972         return bulkRemove(e -> c.contains(e));
973     }
974
975     /**
976      * @throws NullPointerException {@inheritDoc}
977      */

978     public boolean retainAll(Collection<?> c) {
979         Objects.requireNonNull(c);
980         return bulkRemove(e -> !c.contains(e));
981     }
982
983     public void clear() {
984         bulkRemove(e -> true);
985     }
986
987     /**
988      * Tolerate this many consecutive dead nodes before CAS-collapsing.
989      * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
990      */

991     private static final int MAX_HOPS = 8;
992
993     /** Implementation of bulk remove methods. */
994     private boolean bulkRemove(Predicate<? super E> filter) {
995         boolean removed = false;
996         restartFromHead: for (;;) {
997             int hops = MAX_HOPS;
998             // c will be CASed to collapse intervening dead nodes between
999             // pred (or head if null) and p.
1000             for (Node<E> p = head, c = p, pred = null, q; p != null; p = q) {
1001                 q = p.next;
1002                 final E item; boolean pAlive;
1003                 if (pAlive = ((item = p.item) != null)) {
1004                     if (filter.test(item)) {
1005                         if (p.casItem(item, null))
1006                             removed = true;
1007                         pAlive = false;
1008                     }
1009                 }
1010                 if (pAlive || q == null || --hops == 0) {
1011                     // p might already be self-linked here, but if so:
1012                     // - CASing head will surely fail
1013                     // - CASing pred's next will be useless but harmless.
1014                     if ((c != p && !tryCasSuccessor(pred, c, c = p))
1015                         || pAlive) {
1016                         // if CAS failed or alive, abandon old pred
1017                         hops = MAX_HOPS;
1018                         pred = p;
1019                         c = q;
1020                     }
1021                 } else if (p == q)
1022                     continue restartFromHead;
1023             }
1024             return removed;
1025         }
1026     }
1027
1028     /**
1029      * Runs action on each element found during a traversal starting at p.
1030      * If p is null, the action is not run.
1031      */

1032     void forEachFrom(Consumer<? super E> action, Node<E> p) {
1033         for (Node<E> pred = null; p != null; ) {
1034             Node<E> q = p.next;
1035             final E item;
1036             if ((item = p.item) != null) {
1037                 action.accept(item);
1038                 pred = p; p = q; continue;
1039             }
1040             for (Node<E> c = p;; q = p.next) {
1041                 if (q == null || q.item != null) {
1042                     pred = skipDeadNodes(pred, c, p, q); p = q; break;
1043                 }
1044                 if (p == (p = q)) { pred = null; p = head; break; }
1045             }
1046         }
1047     }
1048
1049     /**
1050      * @throws NullPointerException {@inheritDoc}
1051      */

1052     public void forEach(Consumer<? super E> action) {
1053         Objects.requireNonNull(action);
1054         forEachFrom(action, head);
1055     }
1056
1057     // VarHandle mechanics
1058     private static final VarHandle HEAD;
1059     private static final VarHandle TAIL;
1060     static final VarHandle ITEM;
1061     static final VarHandle NEXT;
1062     static {
1063         try {
1064             MethodHandles.Lookup l = MethodHandles.lookup();
1065             HEAD = l.findVarHandle(ConcurrentLinkedQueue.class"head",
1066                                    Node.class);
1067             TAIL = l.findVarHandle(ConcurrentLinkedQueue.class"tail",
1068                                    Node.class);
1069             ITEM = l.findVarHandle(Node.class"item", Object.class);
1070             NEXT = l.findVarHandle(Node.class"next", Node.class);
1071         } catch (ReflectiveOperationException e) {
1072             throw new ExceptionInInitializerError(e);
1073         }
1074     }
1075 }
1076